IMC-101G Series Quick Installation Guide

Moxa Industrial Media Converter

Version 7.2, August 2024

Technical Support Contact Information www.moxa.com/support

P/N: 1802001014019

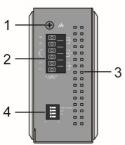
Overview

Moxa's IMC-101G industrial gigabit media converter is designed for reliable and stable operations in harsh industrial environments, and it provides industrial-grade media conversion between 10/100/1000BaseT(X) and 1000BaseSX/LSX/LX/LH/LHX/ZX/EZX (SFP Slot) connections. The IMC-101G's reliable industrial design is excellent for keeping your industrial automation applications running continuously, and it comes with an alarm that activates a relay output to help prevent damage.

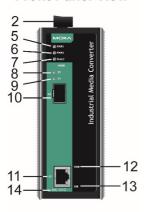
This product has a wide operating temperature range of -40 to 75°C and is designed to withstand a high degree of vibration and shock. The rugged hardware design makes the IMC-101G perfect for ensuring that your Ethernet equipment can withstand a variety of application environments, such as hazardous locations (Class 1 Division 2/Zone 2, IECEx), and complies with CE, FCC, and UL Standards

Package Checklist

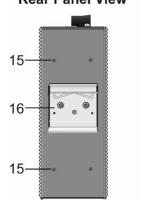
The IMC-101G industrial media converter is shipped with the items listed below. If any of these items is missing or damaged, please contact your customer service representative for assistance.


- Moxa industrial media converter
- Quick installation guide (printed)
- Warranty card

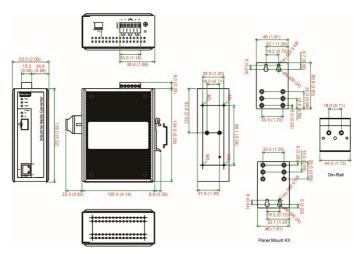
Features


- Supports 10/100/1000BaseT(X) auto-negotiation, auto-MDI/MDI-X, with 1000BaseSX/LSX/LH/LHX/ZX/EZX SFP available
- Supports Link Fault Pass-through
- · Relay Output alarm for when a port breaks or the power fails
- Redundant 12 to 48 VDC power inputs
- DIN rail and panel mountable
- Standard operating temperature range of 0 to 60°C, or extended operating temperature range of -40 to 75°C for -T models

Panel Layouts of the IMC-101G Series


Top Panel View

Front Panel View

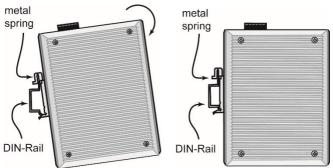


Rear Panel View

- 1. Grounding screw
- Terminal block for power inputs (PWR1/PWR2) and relay output
- 3. Heat dissipation vents
- 4. Dip switches
- 5. Power input PWR1 LED
- 6. Power input PWR2 LED
- 7. Fault LED
- 8. SFP port's 1000 Mpbs G2 LED
- 9. TP port's 1000 Mpbs G1 LED
- 10. 1000BaseSFP fiber port
- 11. 10/100/1000BaseT(X) port
- 12. TP port's 100 Mbps LED
- 13. TP port's 10 Mbps LED
- 14. Model name
- 15. Screw hole for wall-mounting kit
- 16. DIN-rail mounting kit

Dimensions; unit = mm (inch)

DIN-Rail Mounting

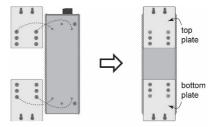

The aluminum DIN-rail attachment plate should be fixed to the back panel of the IMC-101G when you take it out of the box. If you need to reattach the DIN-rail attachment plate to the IMC-101G, make sure the stiff metal spring is situated towards the top, as shown in the figures below.

STEP 1:

Insert the top of the DIN rail into the slot just below the stiff metal spring.

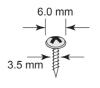
STEP 2:

The DIN-rail attachment unit will snap into place as shown below.


To remove the IMC-101G from the DIN rail, reverse steps 1 and 2 above.

Wall Mounting (Optional)

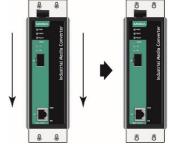
For some applications, you will find it convenient to mount the IMC-101G on the wall, as illustrated below.


STEP 1:

Remove the aluminum DIN-rail attachment plate from the IMC-101G and then attach the wall-mount plates, as shown in the diagrams below.

STEP 2:

Mounting the IMC-101G on the wall requires four screws. Use the IMC-101G, with wall-mount plates attached, as a guide to mark the correct locations of the four screws. The heads of the screws should be less than 6.0 mm in diameter, and the shafts should be less than 3.5 mm in diameter, as shown in the figure on the right.



NOTE Test the screw head and shank size by inserting the screw into one of the keyhole-shaped apertures of the wall-mounting plates, before it is screwed into the wall.

Do not screw the screws in all the way—leave a space of about 2 mm to allow room for sliding the wall-mount panel between the wall and the screws.

STEP 3:

Once the screws are fixed in the wall, insert the four screw heads through the large parts of the keyhole-shaped apertures and then slide the IMC-101G downwards, as indicated in the diagram. Tighten the four screws for added stability.

ATEX and IECEx Information

1. Certification number ATEX: UL 22 ATEX 2882X IECEx: IECEx UL 22.0090X

2. Ambient range:

 $(-40^{\circ}C \le T_{amb} \le 75^{\circ}C)$ for model with the "-T" suffix $(0^{\circ}C \leq T_{amb} \leq 60^{\circ}C)$ for model without the "-T" suffix

3. Certification string

ATEX: Ex ec nC IIC T4 Gc IECEx: Ex ec nC IIC T4 Gc

4. Standards covered:

IEC 60079-0, Edition 7

IEC 60079-7, Edition 5.1

IEC 60079-15, Edition 5

EN IEC 60079-0: 2018

EN IEC 60079-7: 2015 + A1: 2018

EN IEC 60079-15: 2019"

5. Conditions of safe usage:

The devices should be installed in an enclosure that provides a degree of protection not less than IP 54 in accordance with IEC/EN 60079-0 and accessible only by the use of a tool.

II 3G

The devices should only be used in an area of at least pollution degree 2, as defined in IEC/EN 60664-1.

- 6. Rated Cable Temp ≥ 86.2°C.
- 7. Do not connect SFP fiber modules that don't have the "-T" suffix at ambient temperatures exceeding 60°C.

Wiring Requirements

WARNING

Do not disconnect modules or wires unless the power has been switched off or the area is known to be nonhazardous. The devices may only be connected to the supply voltage shown on the type plate.

These devices must be supplied by a SELV source as defined in the Low Voltage Directive 2006/95/EC.

ATTENTION

This unit is a built-in type. It must comply with fire enclosure stipulations of IEC60950-1, or similar statements, when installed in certain end equipment.

ATTENTION

Safety First!

Calculate the maximum possible current in each power wire and common wire. Observe all electrical codes dictating the maximum allowed current for each wire size. If the current goes above the allowed maximum, the wiring could overheat, causing serious damage to your equipment.

You should also pay attention to the following points:

- Use separate paths to route wiring for power and devices. If power wiring and device wiring paths must cross, make sure the wires are perpendicular at the point of intersection.
 - **NOTE:** Do not run signal or communications wiring and power wiring in the same wire conduit. To avoid interference, wires with different signal characteristics should be routed separately.
- You can use the type of signal transmitted through a wire to determine which wires should be kept separate. The rule of thumb is that wiring that shares similar electrical characteristics can be bundled together.
- Keep input wiring and output wiring separate.
- It is strongly advised that you label wiring to all devices in the system when necessary.

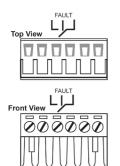
Grounding the IMC-101G

Grounding and wire routing help limit the effects of noise due to electromagnetic interference (EMI). Run the ground connection from the grounding screw to the grounding surface before connecting devices.

ATTENTION

This product is intended to be mounted to a well-grounded mounting surface such as a metal panel.

WARNING


HOT SURFACE, DO NOT TOUCH!! Before touching the surface, make sure it has cooled sufficiently so as not to damage your skin, or wear gloves designed to protect against heat.

This equipment is intended to be used in a Restricted Access Location that is only accessible by SERVICE PERSONNEL or by USERS who have been instructed that the metal chassis of the equipment is so hot that appropriate precautions should be taken before touching it. The Restricted Access Location should only be accessible through the use of a key or security identity system.

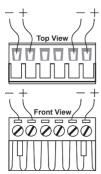
Wiring the Alarm Contact

The Alarm Contact is made up of the two middle contacts of the terminal block on the IMC-101G's top panel. Refer to the next section for detailed instructions on how to connect the wires to the terminal block connector and how to attach the terminal block connector to the terminal block receptor.

In this section, we explain the meaning of the two contacts used to connect the alarm contact.

FAULT: The two middle contacts of the 6-contact terminal block connector are used to detect both power faults and port faults. The two wires attached to the fault contacts form an open circuit when:

 The IMC-101G has lost power from one of the DC power inputs.


OR

One of the ports for which the corresponding PORT ALARM DIP Switch is set to ON is not properly connected.

If neither of these two conditions is met, the fault circuit will be closed.

Wiring the Redundant Power Inputs

The top two contacts and the bottom two contacts of the 6-contact terminal block connector on the IMC-101G's top panel are used for the IMC-101G's two DC inputs. The top and front views of one of the terminal block connectors are shown here.

STEP 1:

Insert the negative/positive DC wires into the V-/V+ terminals, respectively.

STEP 2:

To keep the DC wires from pulling loose, use a small flat-blade screwdriver to tighten the wire-clamp screws on the front of the terminal block connector.

STEP 3:

Insert the plastic terminal block connector prongs into the terminal block receptor, which is located on the IMC-101G's top panel.

NOTE Use copper conductors only; 12-28 AWG gauge, 4.5 in-lb torque.

ATTENTION

Before connecting the IMC-101G to the DC power inputs, make sure the DC power source voltage is stable.

Communication Connections

All IMC-101G models have one 10/100/1000BaseT(X) Ethernet port and one 1000Base SFP fiber port.

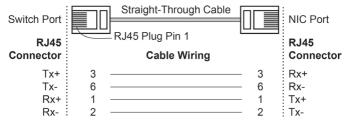
10/100/1000BaseT(X) Ethernet Port Connection

The 10/100/1000BaseT(X) ports located on the IMC-101G's front panel are used to connect to Ethernet-enabled devices. Below we show pinouts for both MDI (NIC-type) ports and MDI-X (HUB/switch-type) ports, and also show cable wiring diagrams for straight-through and crossover Ethernet cables.

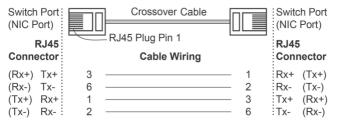
10/100Base T(x) RJ45 Pinouts

MDI Port Pinouts

Pin	Signal
1	Tx+
2	Tx-
3	Rx+
6	Rx-


MDI-X Port Pinouts

Pin	Signal
1	Rx+
2	Rx-
3	Tx+
6	Tx-


8-pin RJ45

RJ45 (8-pin) to RJ45 (8-pin) Straight-Through Cable Wiring

RJ45 (8-pin) to RJ45 (8-pin) Crossover Cable Wiring

1000BaseT(X) Ethernet Port Connection

1000BaseT(X) data is transmitted on differential TRD+/- signal pairs over copper wires.

MDI/MDI-X Port Pinouts

Pin	Signal
1	TRD (0) +
2	TRD (0) -
3	TRD (1) +
4	TRD (2) +
5	TRD (2) -
6	TRD (1) -
7	TRD (3) +
8	TRD (3) -

1000BaseSFP Fiber Port

The gigabit Ethernet ports on the IMC-101G are 1000BaseSFP fiber ports, which require using gigabit mini-GBIC fiber transceivers to work properly.

The concept behind the LC port and cable is quite straightforward. Suppose you are connecting devices I and II: Contrary to electrical signals, optical signals do not require a circuit in order to transmit data. Consequently, one of the optical lines is used to transmit data from device I to device II, and the other optical line is used to transmit data from device II to device I, for full-duplex transmission.

Remember to connect the Tx (transmit) port of device I to the Rx (receive) port of device II, and the Rx (receive) port of device I to the Tx (transmit) port of device II. If you make your own cable, we suggest labeling the two sides of the same line with the same letter (A-to-A and B-to-B, as shown below, or A1-to-A2 and B1-to-B2).

LC-Port Pinouts LC-Port to LC-Port Cable Wiring Cable Wiring A B B

Optical transceivers installed in the field should be UL certified, Class I category, with a clearly visible CDRH certification marking on the transceiver equivalent to: "Complies with 21CFR 1040.10 and 1040.11".

Redundant Power Inputs

Both power inputs can be connected simultaneously to live DC power sources. If one power source fails, the other live source acts as a backup and automatically supplies all of the IMC-101G's power needs.

Alarm Contact

The IMC-101G has one alarm contact located on the top panel. For detailed instructions on how to connect the alarm contact power wires to the two middle contacts of the 6-contact terminal block connector, see the "Wiring the Alarm Contact" section above. A typical scenario would be to connect the fault circuit to a warning light located in the control room. The light can be configured to switch on when a fault is detected.

The alarm contact has two terminals that form a fault circuit for connecting to an alarm system. The two wires attached to the fault contacts form an open circuit when (1) the IMC-101G has lost power from one of the DC power inputs, or (2) one of the TP/SFP ports for which the corresponding PORT ALARM DIP Switch is set to ON is not properly connected. If neither of these two conditions occurs, the fault circuit will be closed.

IMC-101G DIP Switch Setting

NOTE To activate updated DIP switch settings, power off and then power on the IMC-101G.

Dip Switch 1	On:	Enables the PORT ALARM. If the product	
(Default: Off)		experiences a power failure, or the Ethernet port	
		link fails, the relay will form an open circuit and	
		the fault LED will light up.	
	Off:	Disables the corresponding PORT ALARM. The	
		relay will form a closed circuit and the fault LED	
		will never light up.	
Dip Switch 2	On:	Enables LFP (Link Fault Pass-through). To enable	
(Default: On)		the IMC-101 for LFP, set the SFP port to Auto	
		mode.	
	Off:	Disables LFP (Link Fault Pass-through)	
Dip Switch 3	On:	SFP port in Auto (auto-negotiation) mode	
(Default: On)	Off:	Forces SFP port to 1000M	
Dip Switch 4	Reserved for future use		

ATTENTION

When Force mode is used, the LFP function will be disabled.

LED Indicators

The front panel of the IMC-101G has several LED indicators. The function of each LED is described in the table below.

LED	Color	State	Description	
	Amber	On	Power is being supplied to power input PWR1	
PWR1		Off	Power is not being supplied to power input PWR1	
		On	Power is being supplied to power input PWR2	
PWR2	Amber	Off	Power is not being supplied to power input PWR2	
FAUL		On	When the corresponding PORT alarm is enabled and the port's link is inactive.	
T	Red	Off	When the corresponding PORT alarm is enabled and the port's link is active, or when the corresponding PORT alarm is disabled.	
		On	SFP port's 1000 Mbps link is active.	
G2	Green	Blinking	Data is being transmitted at 1000 Mbps.	
		Off	SFP port's 1000 Mbps link is inactive.	
	Green	On	TP port's 1000 Mbps link is active	
G1		Blinking	Data is being transmitted at 1000 Mbps	
		Off	TP port's 1000 Mbps link is inactive	
	Green	On	TP port's 10 Mbps link is active	
10M		Blinking	Data is being transmitted at 10 Mbps	
		Off	TP port's 10 Mbps link is inactive	
		On	TP port's 100 Mbps link is active	
100M	Green	Blinking	Data is being transmitted at 100 Mbps	
		Off	TP port's 100 Mbps link is inactive	

Auto MDI/MDI-X Connection

The Auto MDI/MDI-X function allows users to connect the IMC-101G's 10/100/1000BaseT(X) ports to any kind of Ethernet device, without paying attention to the type of Ethernet cable being used for the connection. This means that you can use either a straight-through cable or crossover cable to connect the IMC-101G to Ethernet devices.

Dual-Speed Functionality and Switching

The IMC-101G's 10/100/1000 Mbps RJ45 switched port auto negotiates with the connected device for the fastest data transmission rate supported by both devices. All models of the IMC-101G are plug-and-play devices, so that software configuration is not required at installation, or during maintenance. The half-duplex or full-duplex mode for the RJ45 switched ports is user dependent and changes (by autonegotiation) to full-duplex or half-duplex, depending on which transmission speed is supported by the attached device.

Auto-Negotiation and Speed Sensing

All of the IMC-101G's RJ45 Ethernet ports independently support autonegotiation for transmission speeds of 10 Mbps, 100 Mbps , and 1000 Mbps, with operation according to the IEEE 802.3u standard.

This means that some nodes could be operating at 10 Mbps, while at the same time, other nodes are operating at 100 Mbps or 1000 Mbps.

Auto-negotiation takes place when an RJ45 cable connection is made. Each time a LINK is enabled, the IMC-101G advertises its capability for using 10 Mbps, 100 Mbps, or 1000 Mbps transmission speeds, with the device at the other end of the cable expected to advertise similarly. Depending on what type of device is connected, this will result in agreement to operate at a speed of 10 Mbps, 100 Mbps, or 1000 Mbps.

If an IMC-101G's RJ45 Ethernet port is connected to a non-negotiating device, it will default to 10 Mbps speed and half-duplex mode, as required by the IEEE 802.3 μ standard.

Specifications

Technology				
Standards	IEEE802.3, 802.3u, 802.3x, 802.3z/ab, Link Fault			
	Pass-through			
Interface				
RJ45 Ports	10/100/1000BaseT(X) auto-negotiation speed, F/H			
	duplex mode, and auto MDI/MDI-X connection			
SFP Ports	1000Base SFP slot			
LED Indicators	PWR1, PWR2, FAULT, 10/100M(TP port), 1000M (TP			
	and SFP port)			
DIP Switches	Port break alarm mask, Link Fault Pass-through, SFP			
	AN/Force			
Alarm Contact	One relay output with current-carrying capacity of 1 A			
	@ 24 VDC, resistive			

Optical Fiber: 1000BaseSX/LSX/LX/LH/LHX/ZX/EZX

(Supports SFP-1G Series module only)

		Wavelength	Max Tx (dBm)	Min Tx (dBm)	Rx Sensitivity (dBm)	Link Budget (dB)	Typical Distance	Saturation (dBm)
	SFP-SX	850 nm	-4	-9.5	-18	8.5	550 m ^a	0
	SFP-LSX	1310 nm	-1	-9	-19	10	2 km ^b	-3
	SFP-LX	1310 nm	-3	-9.5	-20	10.5	10 km ^c	-3
	SFP-LH	1310 nm	-2	-8	-23	15	30 km ^c	-3
	SFP-LHX	1310 nm	1	-4	-24	20	40 km ^c	-3
	SFP-ZX	1550 nm	5	0	-24	24	80 km ^c	-3
ıet	SFP-EZX	1550 nm	5	0	-30	30	110 km ^c	-3
Ethernet	SFP-EZX- 120	1550 nm	3	-2	-33	31	120 km ^c	-8
Gigabit	SFP-10A	TX 1310 nm, RX 1550 nm	-3	-9	-21	12	10 km ^c	-1
	SFP-10B	TX 1550 nm, RX 1310 nm						
	SFP-20A	TX 1310 nm, RX 1550 nm	-2	-8	-23	15	20 km ^c	-1
	SFP-20B	TX 1550 nm, RX 1310 nm						
	SFP-40A	TX 1310 nm, RX 1550 nm	2	-3	-23	20	40 km ^c	-1
	SFP-40B	TX 1550 nm, RX 1310 nm						

a. $50/125~\mu m$, 400~MHz*km or $62.5/125~\mu m$, 500~MHz*km @ 850~nm multimode fiber optic cable b. $62.5/125~\mu m$, 750~MHz*km @ 1310~nm multi-mode fiber optic cable

c. 9/125 µm single-mode fiber optic cable

NOTE The actual communication distance depends on many factors, including connector loss, cable deployment, and the age of the cabling system. We recommend doing a link budget analysis and reserving a 3 dB margin for such factors.

NOTE Please refer to the SFP-1G Series datasheet for more detailed SFP module specifications.

Power			
Input Voltage	12 to 48 VDC, Class 2, redundant inputs		
Input Current	0.229 to 0.068 A		
Connection	Removable Terminal Block		
Overload Current	2.5 A @ 25°C		
Protection			
Reverse Polarity	Supported		
Protection			
Mechanical			
Casing	Metal, IP30 protection		
Dimensions (W x H x D)	53 x 135 x 105 mm (2.1 x 5.3 x 4.1 in)		
Weight	630 g		
Installation	DIN-rail or wall mounting (optional kit)		
Environmental Limits			
Operating Temperature	0 to 60°C (32 to 140°F),		
	-40 to 75°C (-40 to 167°F) for -T models		
Storage Temperature	-40 to 85°C (-40 to 185°F)		
Ambient Relative	5 to 95% (non-condensing)		
Humidity			
Regulatory Approvals			
Safety	UL 508 (can be used in Pollution Degree 2		
	Environments)		
Hazardous Location	UL CID2, ATEX, IECEx		
EMI	FCC Part 15, CISPR 32 class A		
EMS	EN61000-4-2 (ESD), Level 3		
	EN61000-4-3 (RS), Level 3		
	EN61000-4-4 (EFT), Level 3		
	EN61000-4-5 (Surge), Level 2		
	EN61000-4-6 (CS), Level 3		
Shock	IEC 60068-2-27		
Freefall	IEC 60068-2-32		
Vibration	IEC 60068-2-6		
WARRANTY	5 years		