

Moxa Industrial Linux 4.x (Debian 13)

Manual for Arm-based Computers

Version 1.0, February 2026

www.moxa.com/products

© 2026 Moxa Inc. All rights reserved.

Moxa Industrial Linux 4.x (Debian 13) Manual for Arm-based Computers

The software described in this manual is furnished under a license agreement and may be used only in accordance with the terms of that agreement.

Copyright Notice

© 2026 Moxa Inc. All rights reserved.

Trademarks

The MOXA logo is a registered trademark of Moxa Inc.
All other trademarks or registered marks in this manual belong to their respective manufacturers.

Disclaimer

- Information in this document is subject to change without notice and does not represent a commitment on the part of Moxa.
- Moxa provides this document as is, without warranty of any kind, either expressed or implied, including, but not limited to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this manual, or to the products and/or the programs described in this manual, at any time.
- Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no responsibility for its use, or for any infringements on the rights of third parties that may result from its use.
- This product might include unintentional technical or typographical errors. Changes are periodically made to the information herein to correct such errors, and these changes are incorporated into new editions of the publication.

Technical Support Contact Information

www.moxa.com/support

Table of Contents

1. Introduction	6
Moxa Industrial Linux 4	6
Secure and Standard Models	6
Eligible Computing Platforms	7
2. Getting Started	8
Upgrading from MIL3 to MIL4	8
Connecting to the Arm-based Computer	8
Connecting through the Serial Console	8
Connecting via the SSH	11
Managing User Accounts	14
Default User Account and Password Policy	14
Creating and Deleting User Accounts	14
Modifying User Accounts	15
Changing the Password	15
Querying the MIL and OS Image Version	15
Querying the Device Information	16
Determining Available Drive Space	16
Shutting Down the Device	16
3. Device Configuration	17
Bootloader Configuration	17
Accessing the Bootloader Configuration Menu	17
Production and Developer Mode	17
Boot Management	18
Installing the System Image	20
Administrator Password	22
Login Policy	24
Enable AppArmor and SELinux	25
Clearing the TPM Module	26
Changing the Default Hostname	26
Localizing Your Arm-based Computer	26
Adjusting the Time	26
NTP Time Synchronization	27
Setting the Time Zone	28
Configuring Device Discovery	29
Configuring Power Saving	29
Setting the Power Modes	29
Wake Up Configuration	31
System Configuration for Power Management and Savings	31
4. Using and Managing Computer Interfaces	33
Moxa Computer Interface Manager (MCIM)	33
Device Information	33
LED Indicators	34
Storage and Partitions	35
Serial Port	38
Ethernet Interface	40
Serial Console Interface	40
Digital Input/Output (DIO)	41
Example: Adding a Hook Script for the DI1 Port	42
Buzzer	43
Cellular Module Interface	43
Wi-Fi Module Interface	44
Socket Interface	44
CAN Port	45
Configuring the CAN Interface via MCIM	45
Configuring the CAN Interface via ip link	45
CAN Bus Programming Guide	46
Push-button	48
Configuring Actions for Buttons	48

Example: Adding a Custom Action	49
Configuring the Real COM Mode.....	50
Mapping TTY Ports.....	51
Mapping TTY Ports (automatic)	51
Mapping TTY Ports (manual).....	52
Removing Mapped TTY Ports.....	52
5. Configuring and Managing Networks	53
Moxa Connection Manager (MCM)	53
Using MCM With CLI.....	54
Setting Up MCM with GUI Configurator	55
GUI Configurator Overview.....	55
Cellular and Wi-Fi Failover/Failback	59
Connecting via Wi-Fi P2P for Remote Access	62
Software Wi-Fi AP for Remote Access.....	64
Setting Up a Multi-WAN Interface on LAN	67
Checking the Network Status	69
Checking the Interface and Connection Status	69
Cellular Signal Strength	71
Monitoring the Data Usage	72
Upgrading the Cellular Modem Firmware.....	72
Cellular Network Diagnosis.....	73
Using API to Retrieve the MCM Status	73
How to Migrate From cell_mgmt to MCM.....	73
6. System Installation and Update.....	74
Full System Installation Using .img File	74
Using a TFTP Server From Bootloader Menu.....	74
Using a USB/SD From Bootloader Menu	74
Automatic Installation From a USB or SD	74
Offline or Online Upgrade from MIL.....	75
Offline Upgrade.....	78
Online Upgrade.....	79
Online Update via Secure APT	79
Querying the System Image Version.....	79
Fallback Update	79
Managing the APT Repository.....	80
Updating Your System	80
Updating the Bootloader	81
Querying the Current Bootloader Version	81
Downloading the latest Bootloader	81
Updating Bootloader	82
Enable the Fallback Function Before Update.....	82
7. Backup, Decommission, and Recovery	83
Creating a System Snapshot	84
Creating a System Backup	85
Excluding Files and Directories from System Backup.....	87
Setting the System to the Default.....	88
Decommissioning the System.....	88
System Fallback Recovery	89
Customize the Boot Up Failure Criteria	90
8. Security Capability.....	91
Communication Integrity and Authentication	91
User Account Permissions and Privileges	91
Switching to the Root Privilege.....	91
Controlling Permissions and Privileges.....	92
Linux Login Policy	93
Invalid Login Attempts	93
Session Termination After Inactivity	93
Login Banner Message	93
Bootloader Login Policy	94
Secure Boot and Disk Encryption	94

Trusted Platform Module (TPM 2.0)	94
Host Intrusion Detection	95
Default Monitored Files	95
How to Perform Authenticity and Integrity Check on All Files	97
Intrusion Prevention.....	98
Network Security	98
Suricata for Network Security Monitoring.....	98
Enhance DNS Security	102
Firewall	103
Service and Ports.....	107
Managing Resources	110
Audit Log	112
Linux Audit log	112
Bootloader Audit Log	114
Audit Failure Response.....	115
Security Diagnosis Tool (Moxa Guardian).....	116
Diagnosing IEC 62443-4-2 Security Level 2 Compliance	117
Restoring the Security Configuration to the Default	118
Diagnosing EN 18031:1 EU RED Cybersecurity Compliance.....	119
9. Security Hardening Guide	120
Defense-in-depth Strategy	120
Installation	122
Physical Installation	122
Environment Requirements.....	123
Access Control	123
Security Configuration Check	123
Network Service Exposure	124
Operation	124
Maintenance	125
Decommissioning.....	125
10. Customization and Programming.....	126
MIL1 (Debian 9) to MIL4 (Debian 13) Migration	126
MIL3 (Debian 11) to MIL4 (Debian 13) Migration	127
Docker Version Compatibility Notice (MIL4).....	129
Building an Application	129
Introduction	129
Native Compilation	129
Cross Compilation	129
Example Program—hello	130
Example Makefile	131
Creating a Customized Backup for Batch Provisioning.....	132
Introduction	132
Creating and Using System Snapshots and Backups	132
Bluetooth Stack Support and HCI Configuration.....	132
Configuring Bluetooth HCI over UART	133
Using bluetoothctl to manage Bluetooth interface.....	134
Using hcitool for sending HCI commands.....	136
Troubleshooting	136

1. Introduction

Moxa Industrial Linux 4

Moxa Industrial Linux 4 (MIL4) is an industrial-grade Linux distribution developed and maintained by Moxa to address the security, reliability, and long-term support needs of industrial automation systems such as transportation, energy, oil and gas, and manufacturing.

MIL4 is based on Debian 13 with kernel 6.12 and integrated with several feature sets designed to strengthen and accelerate user application development as well as ensure system reliability and security.

Secure and Standard Models

MIL4 provides two security levels in the form of **standard** and **secure** models.

- **Standard models** use the default Debian 13 security configuration, allowing users to customize and build their own security solutions.
- **Secure models** offer a hardened configuration with Secure Boot, predefined security settings, and preinstalled security tools/utilities. They are secure-by-default and aligned with recognized cybersecurity standards.

Cybersecurity Standard Compliance Table for Moxa Computers with Moxa Industrial Linux:

Moxa Computer Series	MIL Version	Cybersecurity Standard
UC-1222A Series	MIL4 Standard	• Europe RED (Directive 2014/53/EU) compliant
UC-2222A Series		
UC-3400A Series	MIL4 Secure	• Europe RED (Directive 2014/53/EU) compliant
UC-4400A Series		• IEC 62443-4-2 Security Leve 2 compliant
UC-8600A Series		

To identify the security model that you have, use the `mx-interface-mgmt deviceinfo` command to display the information. Only secure models will have `SECUREBOOT` enabled.

```
root@moxa-tbeeb1146349:~# mx-interface-mgmt deviceinfo
SERIALNUMBER=TBEEB1146349
MODELNAME=UC-4434A-I-T
SECUREBOOT=Enabled
```

The following table compares the main features in the standard and secure models.

	Standard Model	Secured Model
IEC 62443-4-2 SL2 Host Device Compliance	N/A	✓
EN 18031:1 EU RED Cybersecurity Compliance	✓	✓
Security Configuration	Default Debian configuration	IEC 62443-4-2 SL-2 and EN 18031:1 EU RED compliance
Secure Boot	N/A	✓
AppArmor and SELinux Support	✓	✓
Boot from SD or USB	✓	N/A (SD/USB is not secure as a boot source)
Disk Encryption	N/A	✓
Install Image via TFTP	✓	N/A (TFTP is not a secure protocol)
Secure Image Installation	N/A	✓
Secure Update	✓	✓
Intrusion Detection	✓ (AIDE preinstalled without pre-defined monitoring database)	✓ (AIDE with security monitoring database pre-defined)
Intrusion Prevention	✓ (Fail2ban)	✓ (Fail2ban)
Network Security Monitoring	✓ (Suricata)	✓ (Suricata)
Firewall	✓ (firewalld disabled by default)	✓ (firewalld with pre-configured security policy)
Security Diagnosis Tool (Moxa Guardian)	✓ (EN 18031:1 EU RED)	✓ (EN 18031:1 EU RED and IEC 62443-4-2 SL-2)
Security Event Audit Log	✓ (Audit service disabled by default)	✓ (Audit service configured and running)
TPM 2.0	✓	✓
Backup, Decommission and Recovery	✓ (Moxa System Management)	✓ (Moxa System Management)
Network Management	✓ (Moxa Connection Management)	✓ (Moxa Connection Management)
I/O Interface Management	✓ (Moxa Computer Interface Manager)	✓ (Moxa Computer Interface Manager)

Eligible Computing Platforms

This user manual applies to the Moxa Arm-based computers listed below and includes the complete set of instructions for all supported models.

Some Moxa Arm-based computers come preinstalled with MIL1, while others come with MIL3 or MIL4 Standard.

The table below lists the computer series that support MIL4, along with the ordering options if MIL4 Standard or MIL4 Secure is not preinstalled.

Moxa Computer Series	Preinstalled OS	How to Order MIL4
UC-1222A Series		Order MIL4 Standard or MIL4 Secure via CCS using the model "UC-1200A (CTO)"
UC-2222A Series		Order MIL4 Standard or MIL4 Secure via CCS using the model "UC-2200A (CTO)"
UC-3400A Series	MIL3 Standard (Debian 11, kernel 5.10)	Order MIL4 Standard or MIL4 Secure via CCS using the model "UC-3400A (CTO)"
UC-4400A Series		Order MIL4 Standard or MIL4 Secure via CCS using the model "UC-4400A (CTO)"
UC-8600A Series (Available by the end of Q1 2026)	MIL4 Standard (Debian 13, kernel 6.12)	Order MIL4 Secure via CCS using the model "UC-8600A (CTO)"

*Moxa's Computer Configuration System (CCS)

2. Getting Started

Upgrading from MIL3 to MIL4

You can upgrade your Moxa computers from MIL3 to MIL4 using one of the following methods:

1. Reflash the MIL4 image

Refer to [System Installation and Update](#) for detailed instructions.

2. Backup and restore using Moxa System Manager (MSM)

Create a system backup on a MIL4 device using [Moxa System Manager \(MSM\)](#), then restore the backup to the same Moxa computer series currently running MIL3.

ATTENTION

Upgrading from MIL3 to MIL4 will erase all user data on the device running MIL3.

Ensure that all required data is backed up before performing the upgrade.

Connecting to the Arm-based Computer

You will need another computer to connect to the Arm-based computer and log on to the command line interface. There are two ways to connect: locally through serial console or ethernet cable, or remotely via Secure Shell (SSH). Refer to the Hardware Manual to see how to set up the physical connections.

For default login username and password, please reference the [Default Credentials and Password Strength](#).

The username and password are the same for all serial console and SSH remote log in actions. Root account login is disabled until you manually create a password for the account. The user **moxa** is in the **sudo** group so you can operate system level commands with this user using the **sudo** command. For additional details, see the [Sudo Mechanism](#) section in Chapter 7.

ATTENTION

For security reasons, we highly recommend that you disable the default user account and create your own user accounts.

Connecting through the Serial Console

This method is particularly useful when using the computer for the first time. The signal is transmitted over a direct serial connection, so you do not need to know either of its two IP addresses in order to connect to the Arm-based computer. To connect through the serial console, configure your PC's terminal software using the following settings.

Serial Console Port Settings	
Baudrate	115200 bps
Parity	None
Data bits	8
Stop bits	1
Flow Control	None
Terminal	VT100

Below we show how to use the terminal software to connect to the Arm-based computer in a Linux environment and in a Windows environment.

Linux Users

NOTE

These steps apply to the Linux PC you are using to connect to the Arm-based computer. Do NOT apply these steps to the Arm-based computer itself.

Take the following steps to connect to the Arm-based computer from your Linux PC.

1. Install **minicom** from the package repository of your operating system.

For Centos and Fedora:

```
user@PC1:~# yum -y install minicom
```

For Ubuntu and Debian:

```
user@PC2:~# apt install minicom
```

2. Use the **minicom -s** command to enter the configuration menu and set up the serial port settings.

```
user@PC1:~# minicom -s
```

3. Select **Serial port setup**.

```
+----[configuration]----+
| Filenames and paths
| File transfer protocols
| Serial port setup
| Modem and dialing
| Screen and keyboard
| Save setup as dfl
| Save setup as..
| Exit
| Exit from Minicom
+-----+
```

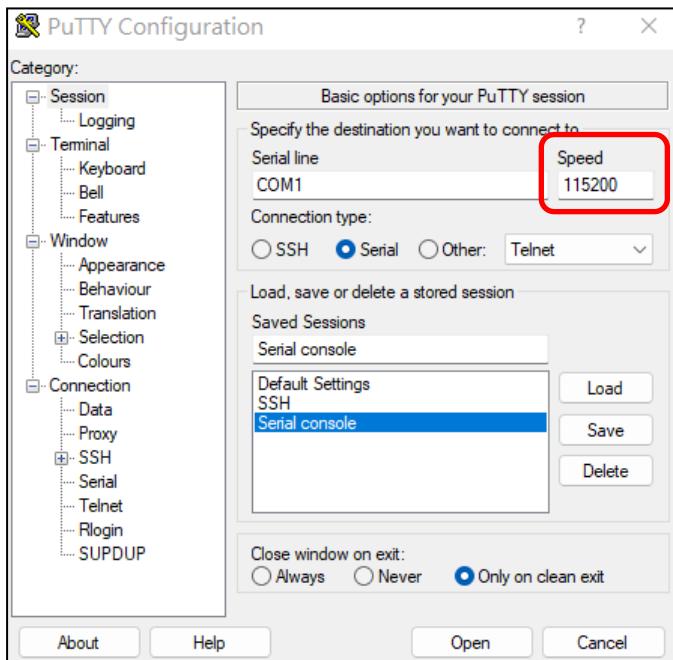
4. Select **A** to change the serial device. Note that you need to know which device node is connected to the Arm-based computer.

```
+-----+
| A - Serial Device      : /dev/tty8
| B - Lockfile Location  : /var/lock
| C - Callin Program     :
| D - Callout Program    :
| E - Bps/Par/Bits       : 115200 8N1
| F - Hardware Flow Control: No
| G - Software Flow Control: No
|
| Change which setting? █
+-----+
| Screen and keyboard
| Save setup as dfl
| Save setup as..
| Exit
| Exit from Minicom
+-----+
```

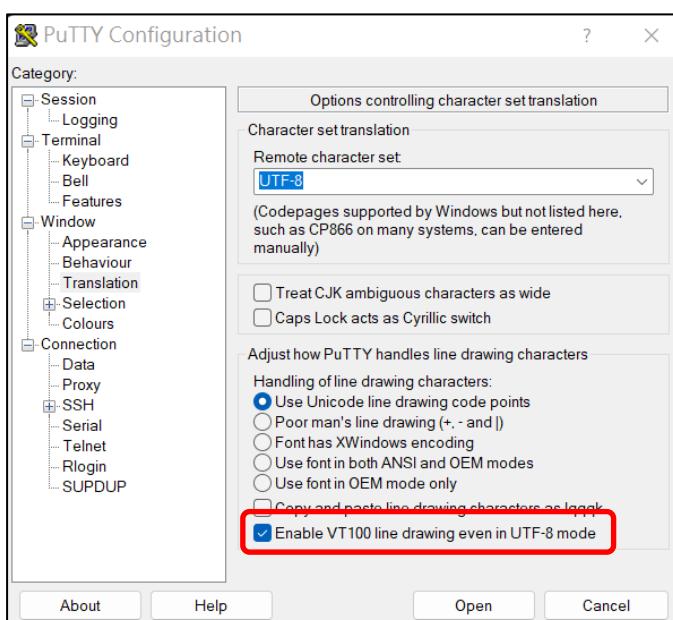
5. Select **E** to configure the port settings according to the **Serial Console Port Settings** table provided.
6. Select **Save setup as dfl** (from the main configuration menu) to use default values.
7. Select **Exit from minicom** (from the configuration menu) to leave the configuration menu.
8. Execute **minicom** after completing the above configurations.

```
user@PC1:~# minicom
```

Windows Users



NOTE


These steps apply to the Windows PC you are using to connect to the Arm-based computer. Do NOT apply these steps to the Arm-based computer itself.

Take the following steps to connect to the Arm-based computer from your Windows PC.

1. Download PuTTY <http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html> to set up a serial connection with the Arm-based computer in a Windows environment. The figure below shows a simple example of the configuration that is required.
2. Once the connection is established, the following window will open.

3. Select the **Serial** connection type and choose settings that are similar to the Minicom settings.
4. Enable **VT100 line drawing** option for the [MCM GUI configurator](#) to show correctly.

Connecting via the SSH

The Arm-based computer supports SSH connections remotely or over an Ethernet network. If you are connecting the computer using an Ethernet cable, refer to the following IP addresses information

Ethernet Port	Configuration	IP Address
LAN 1	DHCP (DHCP client)	Assigned by DHCP server
LAN 2	Static IP	192.168.4.127

NOTE

Be sure to configure the IP address of your notebook/PC's Ethernet interface on the same subnet as the LAN port of Arm-based computer you plan to connect to. For example, 192.168.4.**126** for LAN2.

Linux Users

NOTE

These steps apply to the Linux PC you are using to connect to the Arm-based computer. Do NOT apply these steps to the Arm-based computer itself.

Use the **ssh** command from a Linux computer to access the computer's LAN2 port.

```
user@PC1:~ ssh moxa@192.168.4.127
```

Type **yes** to complete the connection.

```
The authenticity of host '192.168.4.127' can't be established.  
RSA key fingerprint is 8b:ee:ff:84:41:25:fc:cd:2a:f2:92:8f:cb:1f:6b:2f.  
Are you sure you want to continue connection (yes/no)? yes_
```

To connect using LAN1, you need to use the IP offered by DHCP server from LAN1.

ATTENTION

Regenerate SSH key regularly

In order to secure your system, we suggest doing a regular SSH-rekey, as shown in the following steps:

```
moxa@moxa-tbzkb1090923:~$ cd /etc/ssh
moxa@moxa-tbzkb1090923:~$ sudo rm /etc/ssh/ssh_host_*
moxa@moxa-tbzkb1090923:~$ sudo dpkg-reconfigure openssh-server
moxa@moxa-tbzkb1090923:~$ sudo systemctl restart ssh
```

Select “**keep the local version currently installed**” following is prompt during rekey process

```
          | Configuring openssh-server |
sshd_config.moxa: A new version (/tmp/fileuorm95) of configuration file
/etc/ssh/sshd_config.moxa is available, but the version installed
currently has been locally modified.

What do you want to do about modified configuration file
sshd_config.moxa?

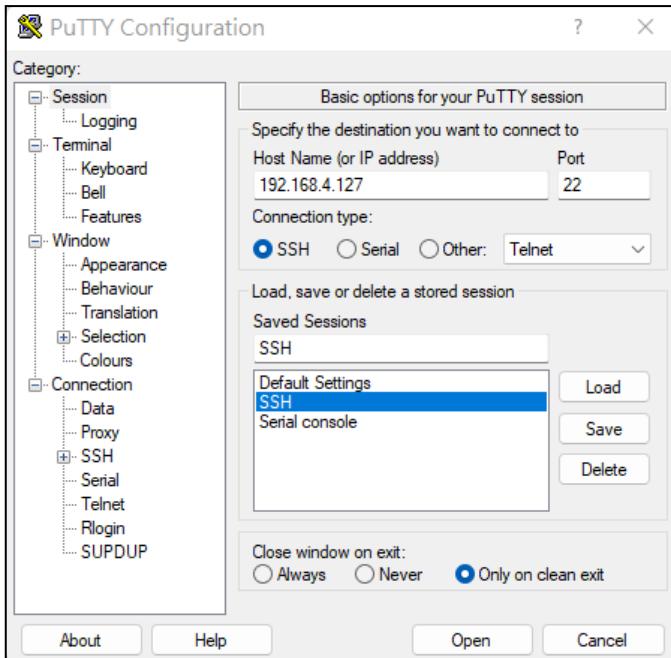
  install the package maintainer's version
  keep the local version currently installed
  show the differences between the versions
  show a side-by-side difference between the versions
  start a new shell to examine the situation

<Ok>
```

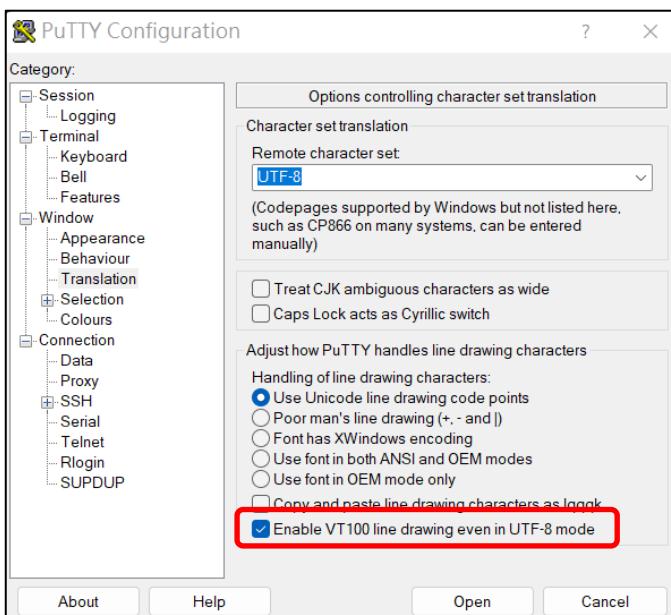
For more information about SSH, refer to the following link.

<https://wiki.debian.org/SSH>

Windows Users



NOTE


These steps apply to the Windows PC you are using to connect to the Arm-based computer. Do NOT apply these steps to the Arm-based computer itself.

Take the following steps from your Windows PC.

Click on the link <http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html> to download PuTTY (free software) to set up an SSH console for the Arm-based computer in a Windows environment. The following figure shows a simple example of the configuration that is required.

Enable **VT100 line drawing** option for the [MCM GUI configurator](#) to show correctly

Managing User Accounts

Default User Account and Password Policy

The default login username and password of Moxa Industrial Linux are both **moxa** for the first-time login. You will be prompted to set a new password before you can continue to login.

- Default Username: **moxa**
- Default Password: **moxa**

Password Strength Requirements:

- At least 8 characters in length
- Dictionary checking is enabled to prevent the use of common passwords

To modify the password strength policy, edit the **/etc/security/pwquality.conf.d/00-moxa-standard-pwquality.conf** file to configure the policy.

NOTE

Click the following link for more information on the password strength configuration.

<https://manpages.debian.org/Trixie/libpwquality-common/pwquality.conf.5.en.html>

For bootloader administrator password configuration, refers to the [bootloader configuration](#) section.

Creating and Deleting User Accounts

ATTENTION

DO NOT disable the default account before creating an alternative user account.

You can use the **useradd** and **userdel** commands to create and delete user accounts. Be sure to reference the manual pages (man) page of these commands to set relevant access privileges for the account. Following example shows how to create a **test1** user in the **sudo** group whose default login shell is **bash** and has home directory at **/home/test1**:

```
moxa@ moxa-tbzkb1090923:~# sudo useradd -m -G sudo -s /bin/bash test1
```

To change the password for **test1**, use the **passwd** option along with the new password. Retype the password to confirm the change.

```
moxa@moxa-tbzkb1090923:~# sudo passwd test1
New password:
Retype new password:
passwd: password updated successfully
```

To delete the user **test1**, use the **userdel** command.

```
moxa@ moxa-tbzkb1090923:# sudo userdel test1
```

Modifying User Accounts

You can use the **usermod** commands to create and modify the user account settings. Some examples of commonly used settings are listed here, including adding a user to a group, locking an account, activating an account and setting the password expiration date for the account.

1. Adding user test1 to the user group Moxa

```
moxa@ moxa-tbzkb1090923:# sudo usermod -a -G Moxa test1
```
2. Disabling or locking the user account test1

```
moxa@ moxa-tbzkb1090923:# sudo usermod -L test1
```
3. Activating the user account test1

```
moxa@ moxa-tbzkb1090923:# sudo usermod -U test1
```
4. Set a password expire date of 2023-11-01 for the user account test1.

```
moxa@ moxa-tbzkb1090923:# sudo usermod -e 2023-11-01 test1
```


NOTE

Refers to below link for complete usage of **usermod**

<https://linux.die.net/man/8/usermod>

Changing the Password

You can use the **passwd** commands to change the password of a user account. Changing the password will not have any impact on other functionalities.

An example of changing the password for user account **test1**.

```
moxa@ moxa-tbzkb1090923:# sudo passwd test1
New password:
Retype new password:
passwd: password updated successfully
```

Querying the MIL and OS Image Version

Use the **mx-ver** command to check the OS **image version** on your Arm-based computer.

1. Use the **mx-ver -M** command to check the **MIL version**.

```
moxa@moxa-imoxa1000042:~$ mx-ver -M
3.4.1
```

2. Use the **mx-ver** command to check the **OS image version**.

```
moxa@moxa-tbzkb1090923:# mx-ver
UC-8220-T-LX-US-S MIL3 version 1.0 Build 22052300
```

3. Use the **mx-ver -h** command to display additional options for querying product-related information.

```
moxa@moxa-tbzkb1090923:# mx-ver -h

Usage: mx-ver [OPTION]
      -a: show product information inline
      -b: show the build time
      -m: show the model name
      -s: show the product series
      -v: show the image version
      -A: show all information
      -M: show the MIL version
      -o: show the image option code
      -h: show the help menu
```

Querying the Device Information

Use the `# mx-interface-mgmt deviceinfo` command to retrieve general information for your Moxa Arm-based Computer

Command and Usage	Description
deviceinfo	Shows the following device information: <ul style="list-style-type: none">• Serial number (S/N)• Model name• SECUREBOOT (Enabled/Disabled)<ul style="list-style-type: none">➢ Enabled means it is MIL Secure model➢ Disabled means it is MIL Standard model

```
moxa@moxa-tbbbb1182827:~$ mx-interface-mgmt deviceinfo
```

```
SERIALNUMBER=TBBBB1182827
MODELNAME=UC-3434A-T-LTE-WiFi
SECUREBOOT=Disabled
```

Determining Available Drive Space

To check how much storage space remains on the device, use the `df` command with the `-h` option. This displays the disk usage in a human-readable format.

The following example shows the storage layout of a factory-default UC-3400A device. The **overlay filesystem** represents the user-writable storage area, which in this case provides approximately **12 GB of available space**:

```
moxa@moxa-tbbbb1182827:~$ sudo df -h
```

Filesystem	Size	Used	Avail	Use%	Mounted on
udev	1.9G	0	1.9G	0%	/dev
tmpfs	1.9G	9.4M	1.9G	1%	/run
/dev/mmcblk0p2	981M	286M	640M	31%	/boot_device/p2
/dev/mmcblk0p3	13G	35M	12G	1%	/boot_device/p3
/dev/mmcblk0p4	974M	320K	906M	1%	/var/log
/dev/loop0	286M	286M	0	100%	/boot_device/p2/lower
overlay	13G	35M	12G	1%	/
/dev/mmcblk0p1	115M	32M	75M	30%	/boot_device/p1
tmpfs	1.9G	0	1.9G	0%	/dev/shm
tmpfs	5.0M	0	5.0M	0%	/run/lock
tmpfs	1.0M	0	1.0M	0%	/run/credentials/systemd-journald.service
tmpfs	1.0M	0	1.0M	0%	/run/credentials/getty@tty1.service
tmpfs	1.0M	0	1.0M	0%	/run/credentials/serial-
getty@ttyS2.service					
tmpfs	388M	4.0K	388M	1%	/run/user/1000

Shutting Down the Device

To shut down the computer, first disconnect the power source. When the computer is powered off, main components such as the CPU, RAM, and storage devices are powered off, although an internal clock may retain battery power.

You can use the Linux command `shutdown` to close all software running on the device and halt the system. However, main components such as the CPU, RAM, and storage devices will continue to be powered after you run this command.

```
moxa@moxa-tbzkb1090923: ~# sudo shutdown -h now
```

3. Device Configuration

In this chapter, we describe how to configure the basic settings of Moxa Arm-based computers, including using the bootloader menu, configuring the network connections and power-saving settings, and localizing the computer. The instructions in this chapter cover all functions supported in Moxa Arm-based computers. Before referring to the sections in this chapter, ensure that they are applicable to and are supported by the hardware specification of your Arm-based computer.

Bootloader Configuration

Accessing the Bootloader Configuration Menu

To access bootloader menu, you must first connect to Moxa Arm-based computer via its [serial console port](#). After powering on the Arm-based computer, press **Ctrl + Backspace** or **DEL** to enter the bootloader configuration menu.

For **Secure Model**, the administrator password to access bootloader menu is set by default. The Default Administrator Password is the **unique Serial Number(S/N)** printed on the sticker of Moxa Arm-based computer.

NOTE

If you cannot enter the bootloader menu by pressing <Ctrl + Backspace> or , replace the PuTTY tool with the Tera Term terminal console tool (detailed information is available at: <https://ttssh2.osdn.jp/index.html.en>.)

```
-----  
Model: UC-3434A-T-LTE-WiFi  
Boot Loader Version: 2.0.0s05  
Build date: Nov 18 2025 - 10:32:10      Serial Number: IMOXA0000001  
LAN1 MAC: 00:90:E8:33:84:01          IP: 192.168.128.1  
LAN2 MAC: 00:90:E8:33:84:02          IP: 192.168.129.2  
-----  
(0) Boot Management                  (1) Install System Image  
(2) Admin Password                  (3) Advance Setting  
(4) Exit & Reboot                   (5) Go To Linux  
-----
```

Production and Developer Mode

For security reasons, the bootloader configuration options vary between the Standard Model and the Secure Model. The Secure Model bootloader supports two modes: **Production Mode** and **Developer Mode**.

Production Mode is the default setting and enforces security controls that comply with the IEC 62443-4-2 Security Level 2 requirements. **Developer Mode** allows additional configuration and operations that are intended only for development, debugging, or maintenance purposes. The Standard Model provides a single mode with all configuration options available in its bootloader.

1. To switch to Developer Mode, run `mx-boot-mgmt mode developer`

```
moxa@moxa-tbbbb1182827:~$ sudo mx-boot-mgmt set mode --developer  
moxa@moxa-tbbbb1182827:/# sudo reboot
```

2. To switch to Production Mode, use `mx-boot-mgmt mode production`

```
moxa@moxa-tbbbb1182827:~$ sudo mx-boot-mgmt set mode --production
moxa@moxa-tbbbb1182827:/# sudo reboot
```

3. Reboot computer for setting to take effect
4. To check the current mode, run `mx-boot-mgmt mode info`

```
moxa@moxa-tbbbb1182827:~$ sudo mx-boot-mgmt mode info
Current mode: production
```

Bootloader Configuration Availability Matrix

Main Menu	Sub Menu	Secure Model		Standard Model
		Production Mode	Developer Mode	Production Mode
(0) Boot Management	(0) Set to Default	N/A	N/A	✓
	(1) Boot Option	N/A	N/A	✓
	(2) Advance Boot Option	N/A	N/A	✓
	(3) View Current Setting	N/A	N/A	✓
(1) Install System Image	(0) Install System Image from TFTP	N/A	✓	✓
	(1) Install System Image from SD	✓	✓	✓
	(2) Install System Image from USB	✓	✓	✓
	(3) TFTP Settings	N/A	✓	✓
(2) Admin Password	(0) Set to Default	✓	✓	✓
	(1) Enable/Disable Admin Password	✓ (enabled by default)	✓ (enabled by default)	✓ (disabled by default)
	(2) Configure Admin Password	✓	✓	✓
	(3) Configure Admin Password Policy	✓	✓	✓
(3) Advance Setting	(0) Set to Default	✓	✓	✓
	(1) Configure Auto Reboot	✓ (enabled by default)	✓ (enabled by default)	✓ (disabled by default)
	(2) Configure Login Message	✓	✓	✓
	(3) Configure Invalid Login Attempts	✓	✓	✓
	(4) Clear TPM	N/A	✓	✓
	(5) Configure Linux Security Modules	✓	✓	✓
	(6) Enable/Disable Interfaces	✓	✓	✓
	(7) Configure Kernel Log Level	✓	✓	✓
(3) Exit & Reboot	(8) View Bootloader log	✓	✓	✓
	–	✓	✓	✓
(4) Go to Linux	–	N/A	N/A	✓

Boot Management

Boot Option

By default, Moxa Arm-based computers boot up from the embedded eMMC flash. Some models also provide an option to boot up from an external SD or USB.

The following is an example of changing first boot priority to SD card and setting the secondary boot option to SD card if the first option fails to boot.

1. Select **(0) Boot Management > (1) Boot Option**
2. Choose to first boot from an external storage.
3. Choose if the embedded storage should be disabled.

If the embedded storage is disabled, Moxa Arm-based computers will only attempt to boot from the SD card. If embedded storage is set to eMMC, the computers will try to boot from SD; if that fails, they will boot from eMMC.

4. Set the External Storage to the SD card

```
-----
Model: UC-3434A-T-LTE-WiFi
Boot Loader Version: 2.0.0S05
Build date: Nov 18 2025 - 10:32:10      Serial Number: IMOXA0000001
LAN1 MAC: 00:90:E8:33:84:01          IP: 192.168.128.1
LAN2 MAC: 00:90:E8:33:84:02          IP: 192.168.129.2
-----
(0) Boot Management                  (1) Install System Image
(2) Admin Password                  (3) Advance Setting
(4) Exit & Reboot                  (5) Go To Linux
-----
Command>>0

-----
Model: UC-3434A-T-LTE-WiFi
Boot Loader Version: 2.0.0S05
Build date: Nov 18 2025 - 10:32:10      Serial Number: IMOXA0000001
LAN1 MAC: 00:90:E8:33:84:01          IP: 192.168.128.1
LAN2 MAC: 00:90:E8:33:84:02          IP: 192.168.129.2
-----
(0) Set to Default                  (1) Boot Option
(2) Advance Boot Option            (3) View Current Setting
-----
Command>>1
Boot Management : Default
Boot Order : Embedded First
Embedded Storage : eMMC
External Storage : Disabled

Would you like to configure the Boot Option?

0 - No, 1 - Yes (0-1, Enter to abort): 1

Set Boot Order:
0 - Embedded First, 1 - External First (0-1, Enter to abort): 1

Set Embedded Storage:
0 - Disabled, 1 - eMMC (0-1, Enter to abort): 1

Set External Storage:
0 - Disabled, 1 - SD, 2 - USB (0-2, Enter to abort): 1

Boot Management : Boot Option
Boot Order : External First
Embedded Storage : eMMC
External Storage : SD

Set ok.
INFO.bootcfg, Set boot from SD ok
```

The table below lists all possible combinations of boot options configuration and the corresponding boot action

Set Boot Order	Set Embedded Storage	Set External Storage	Boot Action
0 - Embedded First	1 - eMMC	0 - Disabled	Boot from eMMC
1 - External First	0 - Disabled	1 - SD or 2 - USB	Boot from the external storage
0 - Embedded First	1 - eMMC	1 - SD or 2 - USB	First boot from eMMC; if it fails, boot from the external storage
1 - External First	1 - eMMC	1 - SD or 2 - USB	Boot from the external storage; if this fails, boot from eMMC

Advance Boot Option

This feature allows advanced users to customize the boot process by modifying the **bootargs** and **bootcmd** parameters.

- **bootargs:** Kernel parameters that define hardware behavior, device drivers, and the root file system location.
- **bootcmd:** A sequence of commands executed automatically by the bootloader. Multiple commands must be separated by semicolons.

Two configuration modes are available:

- **Append Mode:**

User-defined bootargs and bootcmd values are appended to the default Moxa settings.

- **Full Mode:**

User-defined bootargs and bootcmd values replace the default Moxa settings entirely.

```
-----
Model: UC-3434A-T-LTE-WiFi
Boot Loader Version: 2.0.0S05
Build date: Nov 18 2025 - 10:32:10      Serial Number: IMOXA0000001
LAN1 MAC: 00:90:E8:33:84:01           IP: 192.168.128.1
LAN2 MAC: 00:90:E8:33:84:02           IP: 192.168.129.2
-----
(0) Set to Default                  (1) Boot Option
(2) Advance Boot Option            (3) View Current Setting
-----
Command>>2

-----
Model: UC-3434A-T-LTE-WiFi
Boot Loader Version: 2.0.0S05
Build date: Nov 18 2025 - 10:32:10      Serial Number: IMOXA0000001
LAN1 MAC: 00:90:E8:33:84:01           IP: 192.168.128.1
LAN2 MAC: 00:90:E8:33:84:02           IP: 192.168.129.2
-----
(0) Full Mode                      (1) Append Mode
(2) Clear Append Mode Setting
-----
```

Installing the System Image

Installing System Image From TFTP

1. Prepare a TFTP server
2. Set up a TFTP server.
3. Make sure the image (*.img) file is in your TFTP server directory.

IMPORTANT!

Use this method to install a system image on your computer if the size of the image file is less than 2 GB. If the file size is larger than 2 GB, use the SD card or USB to install the system image.

4. Select **Install System Image > TFTP Settings** and configure the following:
 - The LAN port to be used for TFTP transfer
 - Local IP address of LAN port
 - TFTP server IP

5. Press **ESC** to exit and select **Install System Image from TFTP**.

If you want to change the TFTP IP address, enter 1 to set up the local LAN port IP address and the TFTP server IP address, and then choose an image (*.img) file.

```
Current IP Address

Local IP Address : 192.168.1.2 Server IP Address : 192.168.2.3 Using LAN2 to
download data.
Do you want to change the ip address?
0 - No, 1 - Yes(0-1, Enter to abort):1

Local IP Address : 192.168.31.134
Server IP Address : 192.168.31.132
Saving Environment to SPI Flash...
Erasing SPI flash...Writing to SPI flash...done
Valid environment: 2
System Image File Name (system image.img) : IMG_UC-3400A_MIL4_V1.0.0.img
```

6. After the system image installation process is complete, unplug the power supply and reboot the system.
7. After rebooting the system, you can use the following command to check if the system image is up-to-date.

```
moxa@moxa-tbzkb1090923:# sudo mx-ver
UC-3434A-T-LTE-WiFi MIL4 version 1.0.0 Build 25121113
```

Installing the System Image From SD or USB

The system image on the Moxa Arm-based computers can be installed through an external SD or USB disk. Prepare a USB or SD disk in the FAT, exFAT or ext4 format with the system image and plug it into the USB or SD port of the computer.

1. Select **Install System Image > Install System Image from SD or Install System Image from USB**
2. Type in the system image file name.

```
-----
Model: UC-3434A-T-LTE-WiFi
Boot Loader Version: 2.0.0S05
Build date: Nov 18 2025 - 10:32:10      Serial Number: IMOXA0000001
LAN1 MAC: 00:90:E8:33:84:01          IP: 192.168.128.1
LAN2 MAC: 00:90:E8:33:84:02          IP: 192.168.129.2
-----
(0) Install System Image from TFTP    (1) Install System Image from SD
(2) Install System Image from USB     (3) TFTP Settings
-----
Command>>2

System image File Name (System_image.img) : IMG_UC-3400A_MIL4_V1.0.0.img
```

3. Specify the partition that the image files is located, for single partition SD/USB, the partition is 1.
4. After the system image installation process is complete, unplug the power supply and reboot the system.

NOTE

1. Make sure to put **the hash file of the system image** in the same folder as image as integrity validation is required.
2. Only USB or SD storage formatted as **FAT**, **ext4**, or **exFAT** is supported by the bootloader. Other file systems may result in installation failure.

5. After rebooting the system, you can use the following command to check if the system image is up-to-date.

```
moxa@moxa-tbzkb1090923:# sudo mx-ver
UC-3434A-T-LTE-WiFi MIL4 version 1.0.0 Build 25121113
```

Administrator Password

Enabling/Disabling Admin Password

For the **Secure Model**, the administrator password to access the bootloader menu is set by default. The Default Administrator Password is the **unique Serial Number(S/N)** printed on the sticker of Moxa Arm-based computer.

WARNING

- Since the serial number can be easily found under various circumstances, setting an administrator password is mandatory.
- It is important to save the password in a secure location. If the password is lost and access to bootloader menu is needed, you will have to contact Moxa technical support to send your Arm-based computer to Moxa for password reset.

For **Standard Model**, the bootloader menu is not password-protected by default. To enhance the security of your Moxa ARM-based computer, it is strongly recommended to set up an administrator password if physical unauthorized access is a possibility. To setup an administrator password, follow the below procedures:

1. Select **Admin Password > Enable/Disable Admin Password**.
2. Select **1** to set up an administrator password. The currently set password will be cleared if 0 (disable) is selected.
3. Enter the password you would like to set twice; the password strength requirement is at least 8 characters in length.

```
-----
Model: UC-3434A-T-LTE-WiFi
Boot Loader Version: 2.0.0S05
Build date: Nov 18 2025 - 10:32:10      Serial Number: IMOXA0000001
LAN1 MAC: 00:90:E8:33:84:01          IP: 192.168.128.1
LAN2 MAC: 00:90:E8:33:84:02          IP: 192.168.129.2
-----
(0) Set to Default                  (1) Enable/Disable Admin Password
(2) Configure Admin Password       (3) Configure Admin Password Policy
-----
Command>>1
Current Mode: Disabled

0 - Disable, 1 - Enable (0-1, Enter to abort): 1

Admin Password Policy:
- Minimum length: 8

Enter new password: *****
Retype password: *****
Password set successfully

INFO.secure, Admin password changed
```

- Once Administrator password is set, password authentication is required when accessing bootloader menu.

```

DRAM: 1 GiB
MMC: OMAP SD/MMC: 0, OMAP SD/MMC: 1, OMAP SD/MMC: 2
Net:   cpsw0, cpsw1
Non-security model.
Model: 0x02
2.0 TPM (device-id 0x15D1, rev-id 16)
TPM2 Init OK!
TPM2 Startup (1) OK!

Press <DEL> To Enter BIOS configuration Setting

Enter the Administrator password
Enter current password: *****

```

Configuring the Admin Password Policy

To change the administrator password policy, select **Admin Password > Configure Admin Password Policy** and follows the on-screen instructions. Changing the password will not have any impact on functionalities.

```

-----
Model: UC-3434A-T-LTE-WiFi
Boot Loader Version: 2.0.0S05
Build date: Nov 18 2025 - 10:32:10      Serial Number: IMOXA0000001
LAN1 MAC: 00:90:E8:33:84:01           IP: 192.168.128.1
LAN2 MAC: 00:90:E8:33:84:02           IP: 192.168.129.2
-----
(0) Set to Default                      (1)Enable/Disable Admin Password
(2) Configure Admin Password            (3)Configure Admin Password Policy
-----
Command>>3

Current setting:
Admin Password Policy:
- Minimum length: 8

*****
Do you want to configure admin password policy setting?
*****

0 - No, 1 - Yes (0-1, Enter to abort): 1
- Minimum length (6-16, Enter to abort): 8
- Minimum numeric numbers (0-16, Enter to abort): 3
- Minimum lowercase or uppercase letters combined (0-16, Enter to abort): 3
INFO.secure, Admin password policy changed

```

Minimum Length

Setting	Description	Factory Default
Input from 6 to 16	It allows users to decide the minimum length of the password.	8

Minimum Numeric Numbers

Setting	Description	Factory Default
Input from 0 to 16	It allows users to decide the minimum of numeric number that the password must contain	0

Minimum Lowercase or Uppercase Letters Combined

Setting	Description	Factory Default
Input from 0 to 16	It allows users to decide the minimum letters (lowercase or uppercase combined) that the password must contain.	0

Configuring Admin Password

To change the administrator password, select **Admin Password > Configure Admin Password** and follows the on-screen instructions.

Login Policy

Invalid Login Attempts

This determines the **maximum consecutive failure login attempts** allowed during the specified **time period** and the duration to block users from accessing bootloader configuration menu when failure login attempts and time period is over the defined threshold.

To configure this policy, select **Advance Setting > Configure Invalid Login Attempts** and follow the on-screen instructions.

```
-----
Model: UC-3434A-T-LTE-WiFi
Boot Loader Version: 2.0.0S05
Build date: Nov 18 2025 - 10:32:10      Serial Number: IMOXA0000001
LAN1 MAC: 00:90:E8:33:84:01           IP: 192.168.128.1
LAN2 MAC: 00:90:E8:33:84:02           IP: 192.168.129.2
-----
(0) Set to Default                  (1) Configure Auto Reboot
(2) Configure Login Message        (3) Configure Invalid Login Attempts
(4) Clear TPM                      (5) Configure Linux Security Modules
(6) Enable/Disable Interfaces       (7) Configure Kernel Log Level
(8) View Bootloader log
-----
Command>>3

Current setting: [5] consecutive invalid login within [60] seconds will reboot
and disable access to bootloader menu for [300] seconds.

*****
Do you want to configure the invalid login attempts setting?
*****

0 - No, 1 - Yes (0-1, Enter to abort): 1
Input 0 to any of the configuration below will disable invalid login check

Consecutive invalid login attempts (0-5, Enter to abort): 3

Within how many seconds (0-60, Enter to abort): 60

Disable access for how many seconds (0-900, Enter to abort): 300
INFO.secure, Invalid Login Attempts changed
```

Consecutive Invalid Login Attempts

Configuration	Setting	Factory Default
Consecutive invalid login attempts	Input from 0 to 5	0 (Standard model) 5 (Secure model)
Within how many Seconds	Input from 0 to 60	0 (Standard model) 60 (Secure model)
Disable access for how many seconds	Input from 0 to 900	0 (Standard model) 300 (Secure model)

NOTE

Input 0 to any of the above configuration will disable the invalid login check.

Auto Reboot After Inactivity

This determines the time period for auto reboot when users do not do any action.

To set the time period, select **(2) Advance Setting > (1) Configure Auto Reboot** and follow the on-screen instructions.

Setting	Description	Factory Default
Input from 0 to 900 (seconds)	This determines the time period for auto reboot when users do not do any action	0 (Standard model) 900 (Secure model)

Login Banner Message

This allows users to customize the login message before prompting the administrator password.

To configure the message, select **Advance Setting > Configure Login Message** and follow the on-screen instructions.

```
U-Boot 2020.04-ga174fe3ef0-dirty (May 13 2022 - 14:23:01 +0800)
DRAM: 2 GiB
PMIC: PFUZE3000 DEV_ID=0x31 REV_ID=0x11
MMC: FSL_SDHC: 0, FSL_SDHC: 2
Loading Environment from SPI Flash... SF: Detected mx25l12805d with page size
256 Bytes, erase size 64 KiB, total 16 MiB
OK
In:    serial
Out:   serial
Err:   serial
SEC0: RNG instantiated
Net:   eth0: ethernet@30be0000 [PRIME]Get shared mii bus on ethernet@30bf0000
FEC0:1 is connected to ethernet@30be0000. Reconnecting to ethernet@30bf0000
, eth1: ethernet@30bf0000
Model: 0x00
Normal Boot

Press <DEL> To Enter BIOS configuration Setting

Enter the Administrator password
Enter current password:
```

Enable AppArmor and SELinux

The bootloader menu includes an option to enable support for AppArmor and SELinux, which are both disabled by default. Selecting this option will add the corresponding boot parameters to the kernel during startup.

To enable AppArmor or SELinux, navigate to **Advanced Settings > Configure Linux Security Modules** and follow the on-screen instructions.

NOTE

Enabling these options in the bootloader only passes the parameters to the kernel.

The user-space tools for AppArmor and SELinux are not pre-installed on the system. If full functionality is required, you will need to install the respective user-space tools and configure the appropriate security policies.

Clearing the TPM Module

Clearing the TPM will erase information stored on the TPM. You will lose all created keys and access to data encrypted by these keys.

To clear the TPM, select **Advance Setting > Clear TPM** and follow the directions.

Changing the Default Hostname

The default hostname of UC computer with Moxa Industrial Linux 4 is unique for each computer. The hostname is in a format of moxa-[serial number].

If you would like to change the default hostname, follow the below procedure:

1. Modify the hostname by editing /etc/hostname
2. Disable the moxa-hostname service with '**systemctl disable moxa-hostname**' command. moxa-hostname is a service designed to execute automatically during system startup, setting the hostname to a default unique value.
3. Reboot the computer.

Localizing Your Arm-based Computer

Adjusting the Time

The Arm-based computer has two time settings. One is the system time, and the other is the RTC (Real Time Clock) time kept by the Arm-based computer's hardware. Use the **date** command to query the current system time or set a new system time. Use the **hwclock** command to query the current RTC time or set a new RTC time.

Use the **date MMDDhhmmYYYY** command to set the system time:

MM = Month

DD = Date

hhmm = hour and minute

```
moxa@moxa-tbzkb1090923:# sudo date 102900282021
Fri 29 Oct 2021 12:28:00 AM GMT
```

Use the following command to set the RTC time to system time:

```
moxa@moxa-tbzkb1090923:# sudo hwclock -w
moxa@moxa-tbzkb1090923:# sudo hwclock
2021-10-28 16:25:04.077432+00:00
```


NOTE

Click the following links for more information on date and time:

<https://www.debian.org/doc/manuals/system-administrator/ch-sysadmin-time.html>

<https://wiki.debian.org/DateTime>

NTP Time Synchronization

The Moxa Industrial Linux (MIL) uses Network Time Security (NTS) to secure NTP, which provides a handshake (TLS) before using a NTP server and authentication of the NTP time synchronization packets using the results of the TLS handshake.

The default NTP client in MIL is **Chrony**. MIL disabled NTP server without NTS support by default and uses the following public NTP servers that support NTS.

- [Cloudflare](#)
- [Netnod](#)
- [System76](#)
- [PTB](#)

The default server list is configured in the **/etc/chrony/sources.d/moxa-nts.sources** file.

```
# prefer nts over ntp server
server time.cloudflare.com nts iburst prefer
server sth1.nts.netnod.se nts iburst prefer
server sth2.nts.netnod.se nts iburst prefer
server virginia.time.system76.com nts iburst prefer
server ohio.time.system76.com nts iburst prefer
server oregon.time.system76.com nts iburst prefer
server ptbtime1.ptb.de nts iburst prefer
server ptbtime2.ptb.de nts iburst prefer
server ptbtime3.ptb.de nts iburst prefer
```

The configuration file for Chrony is at **/etc/chrony/chrony.conf**.

The following example show some basic functions to monitor the current status of the Chrony's chronyc tool and make changes if necessary.

1. Check the time synchronization status between the local system and reference server using the command:

```
# chronyc tracking
```

```
moxa@moxa-tbbbb1182827:~$ chronyc tracking
Reference ID      : A29FC801 (time.cloudflare.com)
Stratum          : 4
Ref time (UTC)   : Sun Jul 31 18:27:42 2022
System time      : 0.000334575 seconds slow of NTP time
Last offset      : +0.000226902 seconds
RMS offset       : 0.005672113 seconds
Frequency        : 27.766 ppm fast
Residual freq   : -0.065 ppm
Skew             : 3.403 ppm
Root delay       : 0.203054637 seconds
Root dispersion  : 0.006750254 seconds
Update interval  : 517.4 seconds
Leap status      : Normal
```

2. Check the time source configured in the **/etc/chrony/chrony.conf** file using the **# chronyc sources** command.

```
moxa@moxa-tbbbb1182827:/home/moxa# chronyc sources

MS Name/IP address      Stratum Poll Reach LastRx Last sample
=====
^- 103.186.118.211        2   6    17    23    +18ms[ +17ms] +/-   93ms
^- 123-204-232-128.ads1.dyn> 2   6    17    22    +418us[ +418us] +/-   18ms
^+ 103.186.118.215        2   6    17    22    +15ms[ +15ms] +/-   99ms
** t2.time.tw1.yahoo.com   2   6    17    23    +269us[ +331us] +/- 3394us
```

3. Manually synchronize the time using the **# chronyc makestep** command.

NOTE

For additional details on Chrony, check the following links:

<https://linux.die.net/man/8/chronyd>

<https://linux.die.net/man/1/chronyc>

Setting the Time Zone

There are two ways to configure the Moxa Arm-based computer's time zone. One is using the **TZ** variable. The other is using the **/etc/localtime** file.

Using the TZ Variable

The format of the TZ environment variable looks like this:

`TZ=<Value>HH[:MM[:SS]][daylight[HH[:MM[:SS]]]][,start date[/starttime], enddate[/endtime]]]`

Here are some possible settings for the North American Eastern time zone:

1. `TZ=EST5EDT`
2. `TZ=EST0EDT`
3. `TZ=EST0`

In the first case, the reference time is GMT and the stored time values are correct worldwide. A simple change of the TZ variable can print the local time correctly in any time zone.

In the second case, the reference time is Eastern Standard Time and the only conversion performed is for Daylight Saving Time. Therefore, there is no need to adjust the hardware clock for Daylight Saving Time twice per year.

In the third case, the reference time is always the time reported. You can use this option if the hardware clock on your machine automatically adjusts for Daylight Saving Time or you would like to manually adjust the hardware time twice a year.

```
moxa@Moxa-tbzkb1090923:~$ TZ=EST5EDT
moxa@Moxa-tbzkb1090923:~$ export TZ
```

You must include the TZ setting in the **/etc/rc.local** file. The time zone setting will be activated when you restart the computer.

The following table lists other possible values for the TZ environment variable:

Hours From Greenwich Mean Time (GMT)	Value	Description
0	GMT	Greenwich Mean Time
+1	ECT	European Central Time
+2	EET	European Eastern Time
+2	ART	
+3	EAT	Saudi Arabia
+3.5	MET	Iran
+4	NET	
+5	PLT	West Asia
+5.5	IST	India
+6	BST	Central Asia
+7	VST	Bangkok
+8	CTT	China
+9	JST	Japan
+9.5	ACT	Central Australia
+10	AET	Eastern Australia
+11	SST	Central Pacific
+12	NST	New Zealand
-11	MIT	Samoa
-10	HST	Hawaii
-9	AST	Alaska

Hours From Greenwich Mean Time (GMT)	Value	Description
-8	PST	Pacific Standard Time
-7	PNT	Arizona
-7	MST	Mountain Standard Time
-6	CST	Central Standard Time
-5	EST	Eastern Standard Time
-5	IET	Indiana East
-4	PRT	Atlantic Standard Time
-3.5	CNT	Newfoundland
-3	AGT	Eastern South America
-3	BET	Eastern South America
-1	CAT	Azores

Using the `localtime` File

The local time zone is stored in the `/etc/localtime` and is used by GNU Library for C (glibc) if no value has been set for the TZ environment variable. This file is either a copy of the `/usr/share/zoneinfo/` file or a symbolic link to it. The Arm-based computer does not provide `/usr/share/zoneinfo/` files. You should find a suitable time zone information file and write over the original local time file in the Arm-based computer.

Configuring Device Discovery

Moxa provides device discovery through an mDNS service. This discovery service is designed to locate devices within a trusted local network environment during the provisioning stage using the Moxa Swift utility. The service is enabled by default. You can use the following commands to stop or disable the service.

```
moxa@moxa-tbbbb1182827:~$ sudo systemctl stop moxa-mdns.service
moxa@moxa-tbbbb1182827:~$ sudo systemctl disable moxa-mdns.service
Removed '/etc/systemd/system/multi-user.target.wants/moxa-mdns.service'.
moxa@moxa-tbbbb1182827:~$
```

Configuring Power Saving

Setting the Power Modes

The Moxa Power Management tool allows setting the following three power modes enabling savings on power consumption of devices. The power savings could be limited by various field sites.

- Active: Sets the scaling governor to **schedutil (default)**, allowing the system to run at full speed.
- Conservation: Sets the scaling governor to powersave, reducing the CPU frequency to save power.
- Standby: Freezes all processes and puts the CPU into a waiting state until an asynchronous interrupt event such as RTC, Wake-on-LAN occurs.

NOTE

1. The Moxa Power Management tool is currently available only for the **UC-3400A Series**.
2. All additional user-developed drivers must support the Power Manager when the system is set to Standby mode.

To see the list of commands for the power management tool, open the console and run the **sudo mx-pwr-mgmt** command.

```
moxa@moxa-tbdjb1028636:~$ sudo mx-pwr-mgmt -h
MOXA Power Management Command-line Utility

Usage:
  mx-pwr-mgmt [command]

Available Commands:
  info      Show current power mode.
  set       Affect system performance and power usage.
  wakeupctl Control the wakeup sources.

Flags:
  -n, --dry-run Does everything, but suspend.
  -h, --help     Display help for mx-pwr-mgmt.
  -v, --version  Display version for mx-pwr-mgmt.

moxa@moxa-tbdjb1028636:~$
```

Run the **mx-pwr-mgmt info** command to see the current configurations.

```
root@moxa-imoxa0000001:/# sudo mx-pwr-mgmt info
Current Power Mode:
  Active
Current CPU Frequency:
  1250000
Current Scaling Governor:
  schedutil

Supported Power Mode:
  Active Conservation Standby

Peripherals are turned off in Conservation mode:
  WiFi1 Cellular1 LAN1 LAN2 USB SD LEDs
Peripherals are turned off in Standby mode:
  WiFi1 Cellular1 USB SD LEDs
LEDs are Turned off in Conservation or Standby modes:
  RDY_Green
```

```
moxa@moxa-tbdjb1028636:~$ sudo mx-pwr-mgmt set -h

Usage:
  mx-pwr-mgmt set

Available Commands:
  Affect system power-saving policies.
    $ mx-pwr-mgmt set --mode <active|conservation|standby>
    Set power to conservation mode and wake up from Timer.
    $ mx-pwr-mgmt set --mode conservation --second <second>
    Set power to standby mode and wake up from RTC.
    $ mx-pwr-mgmt set --mode standby --second <second>
moxa@moxa-tbdjb1028636:~$
```

Command and Usage	Description
info	<p>Display all Moxa Power Manager information.</p> <ul style="list-style-type: none"> • Current Power Mode. • Current CPU Frequency. • Current Scaling Governor. • Supported Power Mode: Active, Conservation, Standby. • Peripherals are turned off in Conservation mode. • Peripherals are turned off in Standby mode. • LEDs are turned off in Conservation or Standby modes.
set --mode <active conservation standby>	<ul style="list-style-type: none"> • active: set the CPU into schedutil scaling governor. • conservation: set the CPU into power save scaling governor. • standby: freeze the CPU.
set --mode conservation --second <second>	Wake up from an assigned timer to the active mode.
set --mode standby --second <second>	Wake up from an assigned RTC to the standby mode.

Wake Up Configuration

You can enable/disable a wake up on sources such as LAN and RTC using this command.

```
moxa@moxa-tbdjb1028636:~$ sudo mx-pwr-mgmt wakeupctl -h

Usage:
  mx-pwr-mgmt wakeupctl

Available Commands:
  List all available wakeup sources.
    $ mx-pwr-mgmt wakeupctl
  Enable a wakeup source.
    $ mx-pwr-mgmt wakeupctl --enable <dev>
  Disable a wakeup source.
    $ mx-pwr-mgmt wakeupctl --disable <dev>
moxa@moxa-tbdjb1028636:~$
```

```
moxa@moxa-tbdjb1028636:~$ sudo mx-pwr-mgmt wakeupctl
NAME  STATE
RTC0  disabled
LAN1  enabled
LAN2  enabled
moxa@moxa-tbdjb1028636:~$ sudo mx-pwr-mgmt wakeupctl --enable RTC0
```

Command and Usage	Description
mx-pwr-mgmt wakeupctl -h	Display the help menu.
mx-pwr-mgmt wakeupctl	Display all available wakeup sources and their status.
mx-pwr-mgmt wakeupctl --enable	Enable the specified wakeup source.
mx-pwr-mgmt wakeupctl --disable	Disable the specified wakeup source.

System Configuration for Power Management and Savings

Additional configurations commands for power mode management can be included on demand in the **/etc/moxa/moxa-power-manager/model.conf.d/UC-3400A.conf** file. And after modifying the configuration, the MPM systemd service will be triggered at boot, so the changes will take effect on the next boot and set the system to active mode.

```
root@moxa-imoxa0000001:/etc/moxa/moxa-power-manager/model.conf.d# cat UC-3400A.conf

# Please note that all modifications will take full effect after a reboot.
#


[active_mode]
# The available CPU frequency governors can be found in:
# /sys/devices/system/cpu/cpufreq/policy*/scaling_available_governors
governor=schedutil


[conservation_mode]
# The available CPU frequency governors can be found in:
# /sys/devices/system/cpu/cpufreq/policy*/scaling_available_governors
governor=powersave


[spnd_peripheral]
# Default: All peripherals are power off during 'conservation' and 'standby' mode
conservation=WiFi1 Cellular1 LAN1 LAN2 USB SD LED
standby=WiFi1 Cellular1 USB SD LED


[LED]
name=RDY_Green
```

```
[spnd_systemd]
MCM=moxa-connection-manager.service
```

Command and Usage	Description
active_mode	Specifies the governor to be used when the system enters Active mode. Available governors are: powersave, performance, or schedutil (default).
conservation_mode	Specifies the governor to be used when the system enters Conservation mode. Available governors are: powersave (default), performance, or schedutil.
spnd_peripheral	Lists the peripherals that should be powered off when the system enters Conservation or Standby mode.
LED	Lists the LEDs that should be turned off when the system enters Conservation or Standby mode. Note: Please refer to the MCIM tool to get the LED list.
spnd_system	Lists the systemd services that should be stopped when the system enters Conservation or Standby mode.

Further customization of power management is possible by adding to the scripts in the **custom-suspend.sh** and **custom-resume.sh** files in the follow path:

```
root@moxa-imoxa1000038:/etc/moxa/moxa-power-manager/scripts# ls
custom-resume.sh  custom-suspend.sh
```

Command and Usage	Description
custom-suspend.sh	The script will be executed before the system leaving Active mode.
custom-resume.sh	The script will be executed when the system returning to Active mode.

4. Using and Managing Computer Interfaces

In this chapter, we include more information on the Arm-based computer's interfaces, such as the serial interface, storage, diagnostic LEDs, and the wireless module. The instructions in this chapter cover all functions supported in Moxa's Arm-based computers. Before referring to the sections in this chapter, make sure that they are applicable to and are supported by the hardware specification of your Arm-based computer.

Moxa Computer Interface Manager (MCIM)

On many occasions, there isn't one standard method to access and configure specific interfaces on Moxa Arm-based computers because the hardware varies. Hence, programming across different Moxa Arm-based computer models can be difficult and time consuming. The goal of MCIM is to provide a unified software interface to access and configure non-standard computer interfaces. For example, MCIM can change the serial port interface mode (e.g., RS-232, RS-485-2W, RS-485-4W, and RS-422). However, configuring the serial port baudrate is not possible in MCIM because Linux provides a standard method to set the baudrate.

MCIM is a command-line interface (CLI) Moxa utility designed to access and manage Moxa Arm-based computers' interfaces. Use the `# sudo mx-interface-mgmt` command to display the menu page.

Configuring the Log Level

To set the log level of MCIM, edit the configuration file `/etc/moxa/MoxaComputerInterfaceManager/MoxaComputerInterfaceManager.conf`

Key	Value	Description
LOG_LEVEL	debug/info/warn/error	The log-level settings for the logs generated by MCIM for debugging and troubleshooting. The default level is "info"

Device Information

Use the `# mx-interface-mgmt deviceinfo` command to get information on your Moxa Arm-based computer.

Command and Usage	Description
deviceinfo	Show the following information: <ul style="list-style-type: none">• Serial number (S/N)• Model name• SECUREBOOT (Enabled / Disabled)

LED Indicators

Use **# sudo mx-interface-mgmt led** command to get the list of controllable LEDs on your Arm-based computer.

Below is an example of the available LEDs on the UC-3400A Series. The LABEL **L1 ~L3:green:signal** refers to the 3 green LED for cellular signal. The **W1~W3:green:signal** refers to the 3 green LED for Wi-Fi signal.

For **LEDs with multiple colors** such as **USR** (yellow and green), 2 LED names will appear (**USR_Yellow** and **USR_Green**). For this type of LEDs, you must set the state of a color to "off" before setting another color to "on" or "blinking".

```
moxa@moxa-tbzkb1090923:~$ sudo mx-interface-mgmt led

NAME          LABEL          STATE  ALIAS
L1            L1:green:signal  on     N/A
L2            L2:green:signal  on     N/A
L3            L3:green:signal  off    N/A
RDY_Green    RDY:green:status on     RDY
RDY_Red      RDY:red:alarm   off    ALARM
SIM_Green    SIM:green:status off    N/A
SIM_Yellow   SIM:yellow:status on    N/A
USR_Green    USR:green:programming off   N/A
USR_Yellow   USR:yellow:programming off   N/A
W1           W1:green:signal  on     N/A
W2           W2:green:signal  on     N/A
W3           W3:green:signal  off    N/A
```

The MCIM commands for LED indicator controls are listed in the following table:

Command and Usage	Description
led	Shows the following information for all controllable LEDs <ul style="list-style-type: none">• Name (as labeled on the device)• Model series of the device• Color of the LED• Description of the LED• LED state (on/off/heartbeat)
led <led_name>	Show the above information of a specified LED
led <led_name> get_state	Get the current state (on/off/heartbeat) of a specified LED
led <led_name> set_state <led_state>	Set the state of a specified LED. Value of <state> can be on, off, or heartbeat

If an LED is common across multiple Moxa computer series, an ALIAS will be provided for that LED. You can use the alias in place of **<led_name>**.

An example of changing the current state of **USR** LED from **yellow** (steady) to **yellow** (blinking) is given below:

```
moxa@moxa-tbzkb1090923:~# sudo mx-interface-mgmt led USR_Yellow
NAME=SYS
LABEL= USR_Yellow
STATE=on
moxa@moxa-tbzkb1090923:~# sudo mx-interface-mgmt led USR_Yellow set_state
heartbeat
moxa@moxa-tbzkb1090923:~# sudo mx-interface-mgmt led USR_Yellow get_state
heartbeat
```

Storage and Partitions

Use `# sudo mx-interface-mgmt disk` and `# sudo mx-interface-mgmt partition` commands for managing the storage device and partitions.

Command and Usage	Description
<code>disk</code>	Show the following information of all embedded and external storage <ul style="list-style-type: none"> • Name (e.g., eMMC, USB, SD) • Device node (e.g., /dev/mmcblk0) • System disk (Y/N), if 'Y', it is the disk with MIL installed. • Number of partitions • Automount enabled/disabled (Y/N) • I/O state (enabled/disabled)
<code>disk <disk_name></code>	Show the following information of a specified storage device <ul style="list-style-type: none"> • Name (e.g., eMMC, USB, SD) • Device node (e.g., /dev/mmcblk0) • System disk (Y/N), if 'Y', it is the disk with MIL installed. • Partition name and device node • Automount enabled/disabled (Y/N) • I/O state (enabled/disabled)
<code>disk <disk_name></code> <code>set_automount <value></code>	Set a specified external storage device (e.g., USB, SD) to automount when attach to device; <value> is true/false
<code>disk <disk_name></code> <code>set_io_state <io_state></code>	Set the I/O state for a specified USB or SD interface: <ul style="list-style-type: none"> • Enabled (default) • Disables the interface at the GPIO/driver level to reduce the attack surface when the interface is not in use <p><i>Note: Changing the I/O state requires a system reboot</i></p>
<code>partition</code>	Show the following information for partitions on all embedded and external storage devices: <ul style="list-style-type: none"> • Name (e.g., eMMC_p1, eMMC_p2, USB_p1) • Device node (e.g., /dev/mmcblk0p1) • Partition mounted (Y/N) • Partition mount point (e.g., /boot_device/p1) • Filesystem (e.g., ext4, FAT32)
<code>partition <partition_name></code>	Show the above information of a specified partition
<code>partition <partition_name></code> <code>mount</code>	Mount a specified partition
<code>partition <partition_name></code> <code>umount</code>	Unmount a specified partition
<code>partition <partition_name></code> <code>initialize_luks</code>	Encrypts a non-system disk partition (e.g., USB, SD) using LUKS. The encrypted disk will only be mountable on a Moxa computer with the corresponding LUKS key file. <p><i>Note: The user will be prompted to set a minimum 8-character password. This password can be used to recreate the LUKS key file if needed.</i></p> <p>Recommendation: Before Running the Command: <ul style="list-style-type: none"> • Ensure that the to-be-encrypted disk partition is not currently mounted or in use. • Do not run this command from within the directory where the partition is mounted, as it may interfere with the encryption process or cause unexpected errors. Password Security: <ul style="list-style-type: none"> • For enhanced security, it is recommended to use this command interactively, where the user is prompted to enter the password. This prevents the password from being exposed in system logs or command history. </p>
<code>partition <partition_name></code> <code>initialize_luks -i <password></code>	Performs the above encryption function, but with the password provided as a parameter, bypassing the password prompt.

Command and Usage	Description
<pre>partition <partition_name> remap_luks</pre>	<p>Remaps the encrypted disk to regenerate the LUKS key file. This is useful when you need to mount the encrypted disk on another Moxa computer that does not have the corresponding LUKS key file.</p> <p>Recommendation: For enhanced security, it is recommended to use this command interactively, where the user is prompted to enter the password. This prevents the password from being exposed in system logs or command history.</p>

Below is an example of how to query available storage devices and set USB storage drive to automount:

```
moxa@moxa-tbzkb1090923:~$ mx-interface-mgmt disk
NAME  DEVICE      SYSTEM_DISK  NUMBER_OF_PARTITIONS  AUTOMOUNT_SETTING
USB   /dev/sdb     N           1                   false
eMMC  /dev/mmcblk0  Y           4                   false
moxa@moxa-tbzkb1090923:~$ sudo mx-interface-mgmt disk USB set_automount true
```

To query available partitions and mount the partition 1 of the USB storage drive, use the following command:

```
moxa@moxa-tbzkb1090923:~# mx-interface-mgmt partition
NAME      DEVICE      IS_MOUNTED  FS_TYPE  MOUNTPOINT
eMMC_p1   /dev/mmcblk0p1  Y          ext4     /boot_device/p1
eMMC_p2   /dev/mmcblk0p2  Y          ext4     /boot_device/p2
eMMC_p3   /dev/mmcblk0p3  Y          ext4     /boot_device/p3
eMMC_p4   /dev/mmcblk0p4  Y          ext4     /boot_device/p4
USB_p1    /dev/sdb1     N          N/A      N/A

moxa@moxa-tbzkb1090923:~# sudo mx-interface-mgmt partition USB_p1 mount
moxa@moxa-tbzkb1090923:~$ mx-interface-mgmt partition USB_p1
NAME=USB_p1
DEVICE=/dev/sdb1
IS_MOUNTED=Y
FS_TYPE=vfat
MOUNTPOINT=/media/USB_p1
```


WARNING

Setting external storage device to automount may expose your device to cybersecurity risks. It is strongly recommended that you not automount storage device unless your device is placed in a highly secure environment.

Creating an Encrypted External Storage (e.g., USB, SD)

Below is an example of how to create an encrypted USB storage device:

1. Insert a USB card and use `mx-interface-mgmt partition` command to check the name of the available USB partition.

```
moxa@moxa-imoxa0920070:/home/moxa# sudo mx-interface-mgmt partition

NAME      DEVICE      IS_MOUNTED FS_TYPE MOUNTPOINT      MAPPER_DEV  UUID
SD_p1     /dev/mmcblk1p1 N          N/A      N/A          N/A          3e9f8825-1f7...
USB_p1    /dev/sda1    N          N/A      N/A          N/A          N/A
USB_p2    /dev/sda2    N          N/A      N/A          N/A          f4d582eb-f54...
USB_p3    /dev/sda3    N          N/A      N/A          N/A          N/A
eMMC_p1   /dev/mmcblk2p1 Y          ext4     /boot_device/p1 N/A          9ee65098-22a...
eMMC_p2   /dev/mmcblk2p2 Y          ext4     /boot_device/p2 N/A          ae9ebafe-629...
eMMC_p3   /dev/mmcblk2p3 Y          ext4     /boot_device/p3 N/A          fd7f9645-6b7...
eMMC_p4   /dev/mmcblk2p4 Y          ext4     /boot_device/p4 N/A          ab1aad4a-8a9...
```

2. Select a partition on the USB (e.g., `USB_p1` for the 1st partition of the USB) to encrypt and set a password with a minimum length of 8 characters.

```
moxa@moxa-imoxa0920070:/home/moxa# sudo mx-interface-mgmt partition USB_p1
initialize_luks

[Warning]: Initializing a partition as LUKS will erase all data on the partition.
Enter password:
Re-enter password:
```

3. Now, `USB_p1` is LUKS encrypted, and the corresponding LUKS key file is securely hashed using SHA-512 and stored on this computer. As a result, `USB_p1` can only be mounted on this specific computer.
4. If the computer is ever restored to factory default or a new system image is installed, resulting in the loss of the LUKS key file, you can regenerate the key file using the `remap_luks` command by entering the password set in step #2. The same method can also be used when you want to mount the encrypted USB on a different Moxa computer with MIL4.

```
moxa@moxa-imoxa0920070:/home/moxa# sudo mx-interface-mgmt partition USB_p1 mount
Error: GDBus.Error:com.moxa.ComputerInterfaceManager.Error.Core.Failed: LUKS open
process failed: cannot get passphrase from config

moxa@moxa-imoxa0920070:/home/moxa# sudo mx-interface-mgmt partition USB_p1 remap_luks
Enter password:
moxa@moxa-imoxa0920070:/home/moxa# sudo mx-interface-mgmt partition USB_p1 mount
root@moxa-imoxa0920070:/home/moxa# sudo mx-interface-mgmt partition

NAME      DEVICE      IS_MOUNTED FS_TYPE MOUNTPOINT      MAPPER_DEVICE  UUID
SD_p1     /dev/mmcblk1p1 N          N/A      N/A          N/A          3e9f8825-1f7...
USB_p1    /dev/sda1    Y          ext4     /media/USB_p1  sdal_encrypted 44efd7d6-7ea...
USB_p2    /dev/sda2    N          N/A      N/A          N/A          f4d582eb-f54...
USB_p3    /dev/sda3    N          N/A      N/A          N/A          N/A
eMMC_p1   /dev/mmcblk2p1 Y          ext4     /boot_device/p1 N/A          9ee65098-22a...
eMMC_p2   /dev/mmcblk2p2 Y          ext4     /boot_device/p2 N/A          ae9ebafe-629...
eMMC_p3   /dev/mmcblk2p3 Y          ext4     /boot_device/p3 N/A          fd7f9645-6b7...
eMMC_p4   /dev/mmcblk2p4 Y          ext4     /boot_device/p4 N/A          ab1aad4a-8a9...
```

Serial Port

Configuring the Serial Interface via MCIM

Depending on the Moxa computer series, the serial ports support various operation modes, including RS-232, RS-422, RS-485 2-wire, and RS-485 4-wire, with flexible baudrate settings. The default operation mode is RS-232.

Use the `# sudo mx-interface-mgmt serialport` command to configure the operation mode, enable or disable the serial port, and adjust the resistor and terminator settings.

Command and Usage	Description
<code>serialport</code>	Shows the following information for all serial ports on the device: <ul style="list-style-type: none">• Name (as labeled on device)• Device node (e.g., /dev/ttyM0)• Current operation mode configured• I/O state (enabled/disabled)• Resistor<ul style="list-style-type: none">➢ Enabled: 1k-ohm pull-up/pull-down resistor applied➢ Disabled (default): 150k-ohm pull-up/pull-down resistor applied➢ N/A: This current operation mode (e.g., RS-232) doesn't support resistor• Terminator<ul style="list-style-type: none">➢ Enabled: 120-ohm termination resistor applied➢ Disabled (default): 120-ohm termination resistor not applied➢ N/A: This current operation mode (e.g., RS-232) doesn't support terminator
<code>serialport <serialport_name></code>	Shows the following information for a specified serial port: All the information described above Supported baudrates
<code>serialport <serialport_name> get_interface</code>	Gets the current operation mode for a specified serial port
<code>serialport <serialport_name> set_interface <serial_interface></code>	Sets the operation mode for a specified serial port.
<code>serialport <serialport_name> set_io_state <io_state></code>	Set the I/O state for a specified serial port: <ul style="list-style-type: none">• Enabled (default)• Disables the interface at the GPIO/driver level to reduce the attack surface when the interface is not in use Note: Changing the I/O state requires a system reboot
<code>serialport <serialport_name> set_pull_up_down <state></code>	Set the pull-up/pull-down resistor for a specified serial port: <ul style="list-style-type: none">• Enabled: 1k-ohm pull-up/pull-down resistor applied• Disabled (default): 150k-ohm pull-up/pull-down resistor applied
<code>serialport <serialport_name> set_terminator <state></code>	Set the 120-ohm termination resistor for a specified serial port: <ul style="list-style-type: none">• Enabled: 120-ohm termination resistor applied• Disabled (default): 120-ohm termination resistor not applied

Changing the Serial Port Operation Mode

Use the `serialport <port> set_interface` command to change the operation mode of a serial port. For example, to change the mode of COM1 serial port from default RS-232 mode to the RS-422 mode, use the following commands:

```
moxa@moxa-imoxa0000001:~$ sudo mx-interface-mgmt serialport

NAME  DEVICE      INTERFACE  IO_STATE  PULL_UP_DOWN_RESISTOR  TERMINATOR
P1    /dev/ttyUSB0  RS-232    enabled    N/A                  N/A
P2    /dev/ttyUSB1  RS-232    enabled    N/A                  N/A

moxa@moxa-imoxa0000001:~$ sudo mx-interface-mgmt serialport P1
NAME=P1
DEVICE=/dev/ttyUSB0
SUPPORTED_INTERFACES=RS-232,RS-485-2W,RS-422,RS-485-4W
SUPPORTED_BAUDRATES=50,300,600,1200,1800,2400,4800,9600,19200,38400,57600,11520
0,230400,460800,921600
INTERFACE=RS-232
IO_STATE=enabled
PULL_UP_DOWN_RESISTOR=N/A
TERMINATOR=N/A
SUPPORTED_DATA_BITS=5,6,7,8
SUPPORTED_STOP_BITS=1,1.5,2
SUPPORTED_PARITIES=None,Even,Odd,Space,Mark
SUPPORTED_FLOW_CONTROLS=NONE,RTS/CTS,XON/XOFF
PULL_UP_DOWN_RESISTOR_CONFIGURABLE=yes
TERMINATOR_CONFIGURABLE=yes

moxa@moxa-imoxa0000001:~$ sudo mx-interface-mgmt serialport P1 set_interface
RS-422
moxa@moxa-imoxa0000001:~$ sudo mx-interface-mgmt serialport P1 get_interface
RS-422
moxa@moxa-imoxa0000001:~$
```

Changing Other Serial Interface Settings With STTY

The `stty` command is used to view and modify the serial terminal settings.

Displaying All Settings

Use the following example to display all serial terminal settings of COM1 serial port.

```
moxa@moxa-tbzkb1090923:/# mx-interface-mgmt serialport
NAME  DEVICE
COM1  /dev/ttyM0
COM2  /dev/ttyM1

moxa@moxa-tbzkb1090923:/# sudo stty -a -F /dev/ttyM0
speed 9600 baud; rows 0; columns 0; line = 0;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol = <undef>;
eol2 = <undef>; swtch = <undef>; start = ^Q; stop = ^S; susp = ^Z; rprnt = ^R;
werase = ^W; lnext = ^V; flush = ^O; min = 1; time = 0;
-parenb -parodd cs8 hupcl -cstopb cread clocal -crtsets
-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -ixoff
-iuclc -ixany -imaxbel -iutf8
opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab0 bs0 vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt
echoctl echoke
```

Configuring Serial Settings

The following example changes the baudrate to 115200.

```
moxa@moxa-tbzkb1090923:~$ sudo stty 115200 -F /dev/ttyM0
```

Check the settings to confirm that the baudrate has changed to 115200.

```
moxa@moxa-tbzkb1090923:~$ sudo stty -a -F /dev/ttyM0
speed 115200 baud; rows 0; columns 0; line = 0;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol = <undef>;
eol2 = <undef>; swtch = <undef>; start = ^Q; stop = ^S; susp = ^Z; rprnt = ^R;
werase = ^W; lnext = ^V; flush = ^O; min = 1; time = 0;
-parenb -parodd cs8 hupcl -cstopb cread clocal -crtscs
-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -ixoff
-iucr -ixany -imaxbel -iutf8
opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel n10 cr0 tab0 bs0 vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt
echoctl echoke
```

Ethernet Interface

Use `# sudo mx-interface-mgmt ethernet` command to configure the Ethernet ports.

Command and Usage	Description
<code>ethernet</code>	Show the following information of all ethernet ports on the device. <ul style="list-style-type: none">• Name (as labeled on device)• Network interface name (eth0, eth1, etc.)• I/O state (enabled/disabled)
<code>ethernet <ethernet_name></code>	Show the above information of a specified ethernet port
<code>ethernet <ethernet_name> set_io_state <io_state></code>	Set the I/O state for a specified ethernet port: <ul style="list-style-type: none">• Enabled (default)• Disables the interface at the GPIO/driver level to reduce the attack surface when the interface is not in use <i>Note: Changing the I/O state requires a system reboot</i>

```
moxa@moxa-tbzkb1090923:~$ mx-interface-mgmt ethernet
NAME DEVICE NAME
LAN1 eth0
LAN2 eth1
moxa@moxa-tbzkb1090923:~$ mx-interface-mgmt ethernet LAN1
NAME=LAN1
DEVICE_NAME=eth0
moxa@moxa-tbzkb1090923:~$
```

Serial Console Interface

Use the `# mx-interface-mgmt console` command to configure the serial console port.

Command and Usage	Description
<code>console</code>	Show the following information for the console port. <ul style="list-style-type: none">• Name (as labeled on the device)• Device node (e.g., /dev/ttyS0)
<code>Console <console_name></code>	Show the above information of a specified serial console interface
<code>Console <console_name> set_io_state <io_state></code>	Set the I/O state for a specified console port: <ul style="list-style-type: none">• Enabled (default)• Disables the interface at the GPIO/driver level to reduce the attack surface when the interface is not in use <i>Note: Changing the I/O state requires a system reboot</i>

NOTE

If both the serial console interface and ethernet are disabled, and you cannot access Linux through the console port to enable the interface, you can access the bootloader menu and navigate to **Advanced Settings > Enable/Disable Interfaces** to enable the serial console port.

Following is an example of showing the console port device node.

```
root@moxa-tbzkb1090923:~# mx-interface-mgmt console
NAME      DEVICE
Console  /dev/ttys0
root@moxa-tbzkb1090923:~#
```

Digital Input/Output (DIO)

Use the `# sudo mx-interface-mgmt dio` command to query and configure the state for each digital input/output (DIO) interface, and also configure the hook script.

Command and Usage	Description
<code>dio</code>	Shows the following information of all DIO interfaces: <ul style="list-style-type: none"> • Name (as labeled on device) • State (high/low) • Event (high/low/change) • GPIO chip • GPIO line • Direction (input/output)
<code>dio <dio_name></code>	Shows the following information for a specified DI or DO interface <ul style="list-style-type: none"> • Name (as labeled on device) • State (high/low) • Event (high/low/change) • GPIO chip • GPIO line • Direction (input/output) • Hook name: the name of the hook script assigned to this DI interface. • Direct configurable: Indicates whether this digital interface can be configured as either DI or DO (true if configurable).
<code>dio <dio_name> get_state</code>	Gets the current state (high/low) of a specified DI or DO interface
<code>dio <dio_name> set_state <dio_state></code>	Sets the state (high/low) of a specified DO interface
<code>dio <di_name> get_event</code>	Gets the current event setting (none, falling, rising, or change) for the specified DI interface
<code>dio <di_name> set_event <di_event></code>	Sets the event (none, falling, rising, or change) for the specified DI interface
<code>dio <dio_name> get_direction</code>	Gets the direction (input/output) for the specified DIO interface
<code>dio <dio_name> set_direction <direction></code>	Sets the direction (input/output) for the specified DIO interface. This function is only available on computers with a DIO interface that can be configured as either DI (Digital Input) or DO (Digital Output)
<code>dio add_hook <hook_name> <hook_path></code>	Adds a user-defined hook script: <ul style="list-style-type: none"> • <code>hook_name</code>: The alias name of the hook script. Allowed characters include uppercase letters (A-Z), lowercase letters (a-z), digits (0-9), hyphens (-), and underscores (_) • <code>hook_path</code>: The file path of the source hook script. For example: /home/moxa/close_gate.sh. When a hook is added, the script will automatically be copied into the directory: /etc/moxa/MoxaComputerInterfaceManager/dio-scripts
<code>dio delete_hook <hook_name></code>	Delete a hook script
<code>dio list_hook</code>	Lists the added hook scripts <ul style="list-style-type: none"> • Name: The alias name of the hook script • Path: The file path of the associated hook script
<code>dio <dio_name> set_hook <hook_name></code>	Assigns a hook script to a specified button

NOTE

The predetermined state of the digital output interface is high (open circuit).

Example: Adding a Hook Script for the DI1 Port

This example shows how to create and assign a hook script named **“ALERT”** to the first digital input (DI1) of the UC-4400A Series computer, and configure it to automatically execute when DI1 changes to a rising state (pulled high).

1. Create a script named **DI1_ALERT.sh** with following content that will log a line into `/var/log/di1.log` when executed

```
#!/bin/bash
echo "The input value of Digital Input 1 (DI1) has changed" >>
/var/log/di1.log
```

2. Create a new hook named **DI1_ALERT** using **mx-interface-mgmt dio add_hook**

```
root@moxa-imoxa1000030:/# sudo mx-interface-mgmt dio add_hook
DI1_ALERT ./home/moxa/DI1_ALERT.sh
```

3. Assign the hook **DI1_ALERT** to first digital input (DI1) of UC-4400A

```
root@moxa-imoxa1000030:/# sudo mx-interface-mgmt dio DI1 set_hook DI1_ALERT
```

4. Check if the hook is set correctly for DI1

```
root@moxa-imoxa1000030:/# mx-interface-mgmt dio DI1
NAME=DI1
STATE=high
EVENT=none
ACTIVE=no
GPIO_PIN=496
DIRECTION=input
DIRECTION_CONFIGURABLE=no
HOOK_NAME=DI1_ALERT
```

5. Set DI1 to run **DI1_ALERT** script when the DI state is changed to rising (pull high)

```
root@moxa-imoxa1000030:/# sudo mx-interface-mgmt dio DI1 set_event rising
root@moxa-imoxa1000030:/# mx-interface-mgmt dio
```

NAME	STATE	EVENT	ACTIVE	GPIO_PIN	DIRECTION
DI1	high	rising	yes	496	input
DI2	high	none	no	497	input
DI3	high	none	no	498	input
DI4	high	none	no	499	input
DO1	high	none	no	500	output
DO2	high	none	no	501	output
DO3	high	none	no	502	output
DO4	high	none	no	503	output

Buzzer

Use the `# sudo mx-interface-mgmt buzzer` command to query and set the state for buzzer alarm in Moxa Arm-based computers with a buzzer.

Command and Usage	Description
buzzer	Show the following information of all buzzers <ul style="list-style-type: none">• Name• State (on/off)• Device Type• GPIO pin
buzzer <buzzer_name>	Show the following information of a specified buzzer <ul style="list-style-type: none">• Name• State (on/off)• Device Type• GPIO pin
buzzer <buzzer_name> get_state	Get the current state (on/off) of a specified buzzer
buzzer <buzzer_name> set_state	Set the state (on/off) of a specified buzzer

Cellular Module Interface

Use `# sudo mx-interface-mgmt cellular` command to query and manage cellular module(s)

Command and Usage	Description
cellular	Show the following information for all cellular modules. <ul style="list-style-type: none">• Name (e.g., Cellular1)• Network interface name (wwan0, wwan1, etc.)• Cellular module detected (true/false)
cellular <name>	Show the detail information of a specified cellular module <ul style="list-style-type: none">• Name (e.g., Cellular1)• Network interface name (wwan0, wwan1)• Cellular module detected (true/false)• QMI Port (e.g., /dev/cdc-wdm0)• AT Port (e.g., /dev/ttyUSB4)• GPS Port (e.g., /dev/ttyUSB3) if GPS is supported• Cellular module power status (on/off)• Number of available SIM slots on the device• The SIM slot # that is currently used by the cellular module <p><i>Note: SIM slot # correspond to the labeled slot # on the device</i></p>
cellular <name> get_power	Get the cellular module power status (on/off).
cellular <name> set_power <power_state>	Set the cellular module power status (on/off). <i>Note: Module will power-on when device reboot</i>
cellular <name> get_sim_slot	Get the SIM slot # that is currently used by the cellular module
cellular <name> set_sim_slot <sim_slot>	Set the SIM slot # used by cellular module. Module power off/on is required for SIM slot changed to take effect. <i>Note: SIM slot # will be set to default (slot 1) when the device reboot</i>

NOTE

1. Some cellular modules may not support power on/off or SIM slot control.
2. If you are using Moxa Connection Manager (MCM) to manage the cellular connection, do not use `set_power` or `sim_slot` commands as they might interrupt MCM's network failover/fallback operations.

An example of using MCIM to query the cellular module information and changing the SIM slot # use by the module from slot 1 to 2 is given below:

```
moxa@moxa-tb10923:~$ mx-interface-mgmt cellular
NAME      DEVICE_NAME      DEVICE_DETECTED
Cellular1  wwan0           true
moxa@moxa-tb10923:~$ mx-interface-mgmt cellular Cellular1
NAME=Cellular1
DEVICE_NAME=wwan0
QMI_PORT=/dev/cdc-wdm0
AT_PORT=/dev/ttyUSB4
GPS_PORT=/dev/ttyUSB3
DEVICE_DETECTED=true
POWER=on
SIM_SLOT_NUMBER=2
SIM_SLOT=1
moxa@moxa-tb10923:~$ sudo mx-interface-mgmt cellular Cellular1 set_sim_slot 2
moxa@moxa-tb10923:~$ mx-interface-mgmt cellular Cellular1 get_sim_slot
2
```

Wi-Fi Module Interface

Use the `# sudo mx-interface-mgmt wifi` command to query and manage Wi-Fi modules.

Command and Usage	Description
wifi	Shows the following information of all Wi-Fi modules. <ul style="list-style-type: none"> • Name (e.g., WiFi1) • Network interface name (wlan0, wlan1) • Wi-Fi module detected (true/false)
wifi <name>	Shows the above information for a specified Wi-Fi module
wifi <name> get_power	Gets the Wi-Fi module power status (on/off).
wifi <name> set_power <power_state>	Set the Wi-Fi module power status (on/off). <p><i>Note: The module will power-on when the device reboots.</i></p>

NOTE

Some Wi-Fi modules may not support power on/off control.

Socket Interface

Use the `# sudo mx-interface-mgmt socket` command manage the Mini PCI-E sockets on the Moxa Arm-based Computer

Command and Usage	Description
socket	List all the available sockets' name (e.g., Socket1, Socket2)
socket <socket_name>	Shows the following information for a specified Mini PCI-E socket <ul style="list-style-type: none"> • Name (e.g., Socket1, Socket2) • Power status (on/off) • Number of available SIM slots if a cellular module is insert to this Mini PCI-E socket • Get the SIM slot # that is currently used by the cellular module on this Mini PCI-E socket <p><i>Note: SIM slot # correspond to the labeled slot # on the device.</i></p>
socket <socket_name> get_power	Gets the power status (on/off) for a specified Mini PCI-E socket
socket <name> set_power <power_state>	Set the power status (on/off) for a specified Mini PCI-E socket. <p><i>Note: The socket will power-on when the device reboots.</i></p>

CAN Port

The CAN ports on Moxa's Arm-based computers support CAN 2.0A/B standard.

Configuring the CAN Interface via MCIM

Use the `# sudo mx-interface-mgmt can` command disable/enable CAN interface and configure the 120-ohm termination resistor

Command and Usage	Description
can	Shows the following information of all CAN interfaces. <ul style="list-style-type: none">• Name (as labeled on the device, e.g., P3)• Devic name (e.g., can0, can1, can2)• Bitrate• I/O state (enabled/disabled)• Terminator<ul style="list-style-type: none">➢ Enabled: 120-ohm termination resistor applied➢ Disabled (default): 120-ohm termination resistor not applied
can <can_name>	Shows the following information for a specified CAN interface. <ul style="list-style-type: none">• All the information described above• Maximum supported bitrate
can <can_name> get_bitrate	Gets the bitrate for a specified CAN interface
can <can_name> set_io_state <io_state>	Set the I/O state for a specified CAN interface: <ul style="list-style-type: none">• Enabled (default)• Disables the interface at the GPIO/driver level to reduce the attack surface when the interface is not in use <p><i>Note: Changing the I/O state requires a system reboot</i></p>
can <can_name> set_terminator <terminator_state>	Set the 120-ohm termination resistor for a specified CAN interface: <ul style="list-style-type: none">• Enabled: 120-ohm termination resistor applied• Disabled (default): 120-ohm termination resistor not applied

Configuring the CAN Interface via ip link

The CAN ports are initialized by default. If any additional configuration not supported by MCIM are required, use the `ip link` command to check the CAN device.

To check the CAN device status, use the `ip link` command.

```
# ip link
can0: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state UNKNOWN mode
DEFAULT group default qlen 10 link/can
```

To configure the CAN device, use `# ip link set can0 down` to turn off the device first

```
# ip link set can0 down
# ip link
can0: <NOARP,ECHO> mtu 16 qdisc pfifo_fast state DOWN mode DEFAULT group
default qlen 10 link/can
```

Here's an example with bitrate 12500:

```
# ip link set can0 up type can bitrate 12500
```

CAN Bus Programming Guide

The following code is an example of the SocketCAN API, which sends packets using the raw interface.

CAN Write

```
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <net/if.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <linux/can.h>
#include <linux/can/raw.h>
int main(void)
{
    int s;
    int nbytes;
    struct sockaddr_can addr;
    struct can_frame frame;
    struct ifreq ifr;
    char *ifname = "can1";
    if((s = socket(PF_CAN, SOCK_RAW, CAN_RAW)) < 0) {
        perror("Error while opening socket");
        return -1;
    }
    strcpy(ifr.ifr_name, ifname);
    ioctl(s, SIOCGIFINDEX, &ifr);
    addr.can_family = AF_CAN;
    addr.can_ifindex = ifr.ifr_ifindex;
    printf("%s at index %d\n", ifname, ifr.ifr_ifindex);
    if(bind(s, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
        perror("Error in socket bind");
        return -2;
    }
    frame.can_id = 0x123;
    frame.can_dlc = 2;
    frame.data[0] = 0x11;
    frame.data[1] = 0x22;
    nbytes = write(s, &frame, sizeof(struct can_frame));
    printf("Wrote %d bytes\n", nbytes);
    return 0;
}
```

CAN Read

The following sample code illustrates how to read the data.

```
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <net/if.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <linux/can.h>
#include <linux/can/raw.h>
Int main(void)
{
    int i;
    int s;
    int nbytes;
    struct sockaddr_can addr;
    struct can_frame frame;
    struct ifreq ifr;
    char *ifname = "can0";
    if((s = socket(PF_CAN, SOCK_RAW, CAN_RAW)) < 0) {
        perror("Error while opening socket");
        return -1;
    }
    strcpy(ifr.ifr_name, ifname);
    ioctl(s, SIOCGIFINDEX, &ifr);
    addr.can_family = AF_CAN;
    addr.can_ifindex = ifr.ifr_ifindex;
    printf("%s at index %d\n", ifname, ifr.ifr_ifindex);
    if(bind(s, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
        perror("Error in socket bind");
        return -2;
    }
    nbytes = read(s, &frame, sizeof(struct can_frame));
    if (nbytes < 0) {
        perror("Error in can raw socket read");
        return 1;
    }
    if (nbytes < sizeof(struct can_frame)) {
        fprintf(stderr, "read: incomplete CAN frame\n");
        return 1;
    }
    printf(" %5s %03x [%d] ", ifname, frame.can_id, frame.can_dlc);
    for (i = 0; i < frame.can_dlc; i++)
        printf(" %02x", frame.data[i]);
    printf("\n");
    return 0;
}
```

After you use the SocketCAN API, the SocketCAN information is written to the paths:
/proc/sys/net/ipv4/conf/can* and **/proc/sys/net/ipv4/neigh/can***

Push-button

A push button is available on Moxa Arm-based computers. The default actions of this button are described below:

Button Action	LED Indicator Status	Resulting Action
Press and hold FN button and release within 1s	System LED blinks	Device reboot
Press and hold FN button and release between 7s to 9s	<ul style="list-style-type: none">System LED blinks for 1s to 6sSystem LED is ON for 7s to 9s	Reset to factory default
Press and hold FN button and release after 9s	<ul style="list-style-type: none">System LED blinks for 1s to 6sSystem LED is ON for 7s to 9sSystem LED is OFF after 9s	Do nothing; cancel action

NOTE

The System LED may be labeled as **USR**, **RDY**, or **READY** depending on the model of your Moxa Arm-based computer.

Configuring Actions for Buttons

Use `# sudo mx-interface-mgmt button` command to display all buttons on your computer and manage the button actions.

Command and Usage	Description
button	Shows the following information for all buttons on the device: <ul style="list-style-type: none">Name (as labeled on device)Action:<ul style="list-style-type: none">default: Button behavior is set to the factory default action.snapshot: When pressing and holding the button and releasing between 7s to 9s, the system restores the computer to the user-created snapshot instead of the factory defaultdisabled: The button has no function when pushedcustomized (user-defined): Users can create their own action script and assign it to the button. The action name will appear as defined by the user (e.g., shutdown, backup, sendlog). Custom actions can be created with the <code>add_action</code> command and applied to a button with the <code>set_action</code> command (see the command descriptions below)
button <name>	Shows the above information for a specified button
button add_action <action_name> <action_path>	Adds a customized (user-defined) action: <ul style="list-style-type: none">action_name: The name of the action. Allowed characters include uppercase letters (A-Z), lowercase letters (a-z), digits (0-9), hyphens (-), and underscores (_)action_path: The file path of the source bash script. For example: /home/moxa/shutdown_button.sh. When the action is added, the script will automatically be copied into the directory: /etc/moxa/MoxaComputerInterfaceManager/button-scripts/
button delete_action <action_name>	Deletes a customized (user-defined) action
button list_action	Lists the MIL pre-defined actions and user-defined actions: <ul style="list-style-type: none">Name: The name of the actionReserved: Indicates whether the action is pre-defined by MIL (true) or created by the user (false)Path: The file path of the associated bash script
button <button_name> get_action	Retrieves the action currently assigned to the specified button
button <button_name> set_action <action_name>	Assigns an action to a specified button

Following is an example of using MCIM to query an available button (labeled as RESET on device) of the UC-3400A series.

```
root@moxa-tb10923:~# mx-interface-mgmt button
NAME  Action
FN    default
```

The example below shows that its action has been configured as snapshot. When pressing and holding the button, then releasing it between 7 and 9 seconds, the system restores the user-created snapshot instead of the factory default:

```
root@moxa-tb10226:/home/moxa# mx-interface-mgmt button
NAME  ACTION
RESET  snapshot
```

Example: Adding a Custom Action

This example demonstrates how to create and assign a customized button action named "SHUTDOWN" on the UC-3400A series, which performs the following function:

Button Action	LED Indicator Status	Resulting Action
Press and hold the "RESET" button and release within 1 second	READY LED blinks	Device reboot
Press and hold the "RESET" button and release between 7 to 9 seconds	<ul style="list-style-type: none"> READY LED blinks for 1 to 6 seconds READY LED is ON for 7 to 9 seconds 	Restore the system from a snapshot
Press and hold the "RESET" button for longer than 15 seconds then release	<ul style="list-style-type: none"> READY LED blinks for 1s to 6s READY LED is ON for 7s to 9s READY LED is blinks after 10s 	Shutdown the computer

The contents of the script are shown below:

```
#!/bin/sh

ACTION="${1}"
SECONDS="${2}"

if [ "${ACTION}" = "press" ]; then
    /usr/bin/mx-interface-mgmt led RDY_Red set_state off
    /usr/bin/mx-interface-mgmt led RDY_Green set_state off

elif [ "${ACTION}" = "hold" ]; then
    if [ ${SECONDS} -eq 1 ]; then
        /usr/bin/mx-interface-mgmt led RDY_Green set_state heartbeat
    elif [ ${SECONDS} -eq 7 ]; then
        /usr/bin/mx-interface-mgmt led RDY_Green set_state on
    elif [ ${SECONDS} -eq 9 ]; then
        /usr/bin/mx-interface-mgmt led RDY_Green set_state off
    elif [ ${SECONDS} -ge 10 ]; then
        /usr/bin/mx-interface-mgmt led RDY_Green set_state heartbeat
    fi

elif [ "${ACTION}" = "release" ]; then
    if [ ${SECONDS} -lt 1 ]; then
        /usr/sbin/reboot
    elif [ ${SECONDS} -ge 7 ] && [ ${SECONDS} -lt 9 ]; then
        /usr/bin/mx-interface-mgmt led RDY_Green set_state heartbeat
        if /usr/sbin/mx-system-mgmt snapshot info > /dev/null 2>&1; then
            /usr/sbin/mx-system-mgmt snapshot restore --yes
            /usr/sbin/reboot
        else
            echo "Error: There is no snapshot information"
            /usr/bin/mx-interface-mgmt led RDY_Green set_state off
        exit 1
    fi
fi
```

```

        fi
    elif [ ${SECONDS} -ge 15 ]; then
        /sbin/shutdown -h now
    fi
    /usr/bin/mx-interface-mgmt led RDY_Green set_state on
fi

exit 0

```

1. Create a script named **shutdown_button.sh** under path **/home/moxa/** with content above
2. Create a user-defined action named **SHUTDOWN** and specify the path of the script

```
root@moxa-tb10226:/# sudo mx-interface-mgmt button add_action SHUTDOWN
/home/moxa/shutdown_button.sh
```

3. Confirms the action is created successfully

```
root@moxa-tb10226:/home/moxa# mx-interface-mgmt button list_action
NAME      RESERVED PATH
SHUTDOWN  false    /etc/moxa/MoxaComputerInterfaceManager/button-
scripts/shutdown_button.sh
default    true    /etc/moxa/MoxaComputerInterfaceManager/button-
scripts/uc3400a-default.script
snapshot   true    /etc/moxa/MoxaComputerInterfaceManager/button-
scripts/uc3400a-snapshot.script
user-defined true    /etc/moxa/MoxaComputerInterfaceManager/button-
scripts/custom.script
```

4. Check the push button name. In this example, the result shows that the name is **RESET**

```
root@moxa-tb10226:/# mx-interface-mgmt button
NAME  ACTION
RESET default
```

5. Set the **RESET** button to use the newly created action **SHUTDOWN**

```
root@moxa-tb10226:/# sudo mx-interface-mgmt button RESET set_action SHUTDOWN
root@moxa-tb10226:/# mx-interface-mgmt button
NAME  ACTION
RESET SHUTDOWN
```

Configuring the Real COM Mode

You can use Moxa's NPort Series serial device drivers to extend the number of serial interfaces (ports) on your UC computer. The NPort comes equipped with COM drivers that work with Windows systems and TTY drivers for Linux systems. The driver establishes a transparent connection between the UC computer and serial device by mapping the IP Port of the NPort's serial port to a local pseudo COM/TTY port on the UC computer.

In addition, the Real COM mode supports up to 4 simultaneous connections, so that multiple hosts (e.g., PC or UC computer) can collect data from a serial device at the same time.

One of the major conveniences of using the Real COM mode is that it allows users to continue using RS-232/422/485 serial communications software that was written for pure serial communications applications. The driver intercepts data sent to the host's COM port, packs it into a TCP/IP packet, and then redirects it through the host's Ethernet card. At the other end of the connection, the NPort accepts the Ethernet frame, unpacks the TCP/IP packet, and then sends it transparently to the appropriate serial device attached to one of the NPort's serial ports.

To install the Real COM driver on the UC computer, download the driver using apt from Moxa software repository that is accessible over the Internet. You will be able to view the driver-related files in the /usr/lib/npreal2/driver folder after a successful installation.

```
root@moxa-tb10923:~# sudo apt update && apt install moxa-nport-real-tty-utils

> mxaddsvr (Add Server, mapping tty port)
> mxdelsvr (Delete Server, unmapping tty port)
> mxloadsvr (Reload Server)
> mxmknod (Create device node/tty port)
> mxrmnod (Remove device node/tty port)
> mxuninst (Remove tty port and driver files)
```

Now, load the driver using the command:

```
root@moxa-tb10923:~# modprobe npreal2
```

To ensure the driver loads automatically at each system bootup, run the command below to create a configuration file:

```
root@moxa-tb10923:~# echo "npreal2" > /etc/modules-load.d/npreal2.conf
```

At this point, you will be ready to map the NPort serial port to the system **tty** port. For a list of supported NPort devices and their revision history, click <https://www.moxa.com/en/support/search?psid=50278>.

Mapping TTY Ports

First of all, ensure that you set the operation mode of the desired NPort serial port to Real COM mode. After logging in as a super user, enter the directory /usr/lib/npreal2/driver and then run the mxaddsvr command to map the target NPort serial port to the host tty ports.

The syntax of **mxaddsvr** command is as follows:

```
mxaddsvr [NPort IP Address] [Total Ports] ([Data port] [Cmd port])
```

The **mxaddsvr** command performs the following actions:

- Modifies the npreal2d.cf
- Creates tty ports in the /dev directory with major & minor numbers configured in npreal2d.cf
- Restarts the driver.

Mapping TTY Ports (automatic)

To map tty ports automatically, run the **mxaddsvr** command with just the IP address and the number of ports, as shown in the following example:

```
# cd /usr/lib/npreal2/driver
# ./mxaddsvr 192.168.3.4 16
```

16 tty ports will be added, all with IP 192.168.3.4, consisting of data ports from 950 to 965 and command ports from 966 to 981.

ATTENTION

You must reboot the system after mapping tty ports with **mxaddsvr**.

Mapping TTY Ports (manual)

To map tty ports manually, run the **mxaddsvr** command and specify the data and command ports as shown in the following example:

```
# cd /usr/lib/npreal2/driver
# ./mxaddsvr 192.168.3.4 16 4001 966
```

In this example, 16 tty ports will be added, all with IP 192.168.3.4; data ports from 4001 to 4016 and command ports from 966 to 981.

ATTENTION

You must reboot the system after mapping the tty ports with **mxaddsvr**.

Removing Mapped TTY Ports

After logging in as root, enter the directory /usr/lib/npreal2/driver and run the **mxdelsvr** command to delete a server. The syntax of **mxdelsvr** is as follows:

mxdelsvr [IP Address]

Example:

```
# cd /usr/lib/npreal2/driver
# ./mxdelsvr 192.168.3.4
```

The following actions are performed when you run the **mxdelsvr** command:

1. Modifies npreal2d.cf
2. The relevant tty ports are removed from the /dev directory
3. Restarts the driver

If the IP address is not provided in the command line, the program will list the installed servers and total ports on the screen. You will need to choose a server from the list for deletion.

5. Configuring and Managing Networks

Moxa Connection Manager (MCM)

MCM is a network management utility developed by Moxa to manage the LAN and WAN network on your Moxa Arm-based computer, including Wi-Fi, cellular, and ethernet interfaces. With MCM, you can easily fill in the connection profile and priority in the configuration file; then MCM will automatically connect and keep the connection alive. Following are the major features of MCM:

- Cellular, Ethernet and Wi-fi connection
- Connection auto keep-alive, failover, and fallback
- DHCP server
- Data usage monitoring
- Cellular connection diagnosis tool
- Cellular modem and network information
- Cellular modem firmware upgrade with fallback

IMPORTANT!

You can find the detailed online user manual for the Moxa Connection Manager (MCM) at the following link: [Moxa Connection Manager Reference Manual](#)

Following is default configuration of Moxa Connection Manager (MCM):

Interface	Default Managed by MCM	Network Configuration
LAN1	No	Set as DHCP WAN by default.
LAN2	No	Static IPv4, 192.168.4.127 retrieve from <code>/etc/network/interfaces</code>
Cellular/ Wi-Fi	No	Not configured

To run the MCM tool, use `# sudo mx-connect-mgmt`

```
moxa@moxa-imoxa000001:~$ sudo mx-connect-mgmt
mx_connect_mgmt 2.0.0
MOXA Connection Management Command-line Utility

USAGE:
  mx-connect-mgmt [SUBCOMMAND]

FLAGS:
  -h, --help      Prints help information
  -V, --version   Prints version information

SUBCOMMANDS:
  GPS            Control GPS interface
  configure      Configure MOXA Connection Management via GUI dialog
  datausage      Show interface data usage information and related functions
  debug          Debug and diagnose cellular connection
  default        Reset to default configuration
  dyn_conf       Manage interface and MCM settings via dynamic (in-memory)
  configuration
  Note: Changes to memory (via 'modify' or 'profile') take
        effect only after 'reload -d' or after 'dyn_conf save' followed
        by 'reload'.
  help           Prints this message or the help of the given subcommand(s)
```

ls	List available network interfaces
modem	Upgrade cellular modem firmware
nwk_info	Show network and modem's information and connection status
reload	Reload configuration files from disk and restart interfaces
	Use '-d' to reload dynamic configuration from memory instead
start	Start to control interfaces
stop	Stop to control interfaces
timesync	Configure time synchronization method
unlock_pin	Unlock SIM PIN for the specified interface
unlock_puk	Unlock PUK and reset SIM PIN for the specified interface
wifi	Search Wi-Fi AP

There are 2 types of configuration files for MCM. One is main configuration file to manage the interrelationship between each interface, and one configuration files per each network interfaces available on Moxa Arm-based computer

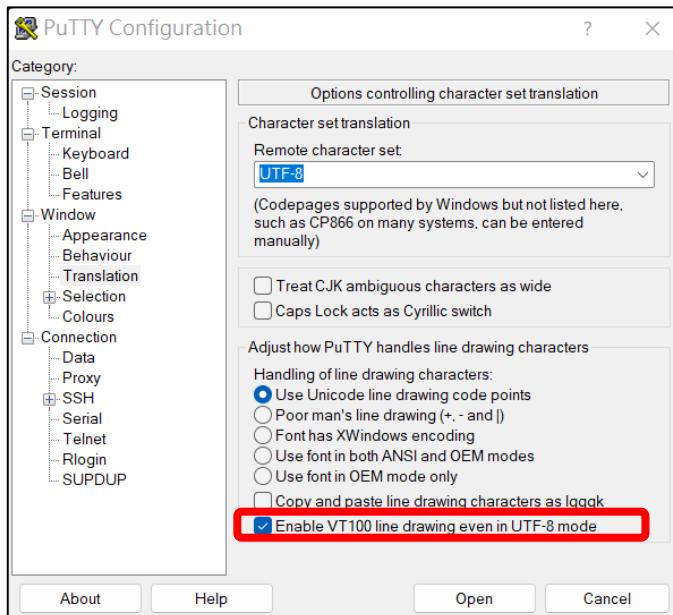
Config Type	Description	File Location
Main Config.	Main configuration file which is to configure which network interface you would like MCM to manage and set the priority during failover/failback	/etc/moxa/MoxaConnectionManager/MoxaConnectionManager.conf
Interface Config.	Per interface configuration file which is to configure properties of individual interfaces. Such as APN, PIN code of cellular connection or SSID and password of Wi-Fi.	/etc/moxa/MoxaConnectionManager/interfaces/[interface name].conf

NOTE

- When modification is made to configuration file, you must use `# sudo mx-connect-mgmt reload` to make the change effective.
- You can find the detailed configuration file structure in the "Configuration File" chapter of the [Moxa Connection Manager Reference Manual](#).
- We highly recommend using the GUI Configurator, described in the next section, instead of editing the configuration file directly, as it automatically checks for conflicts.

Instead of modifying the configuration file directly, we highly recommend you use the **GUI Configurator** described in next section to configure MCM.

Using MCM With CLI


Like the **cell_mgmt** tool in Moxa Industrial Linux 1, the **Moxa Connection Manager (MCM)** also supports configuration through the command-line interface (CLI). For detailed, refer to the [MCM CLI Reference Manual](#).

Setting Up MCM with GUI Configurator

GUI Configurator Overview

To configure the WAN network through ethernet, Wi-Fi or cellular interface on the V2406C computer, you can use the simple GUI dialog provided by using `# mx-connect-mgmt configure` command.

If you are using PuTTY, enable **VT100 line drawing** option under **Windows > Translation** for the GUI to show correctly.

1. Go to the main page.

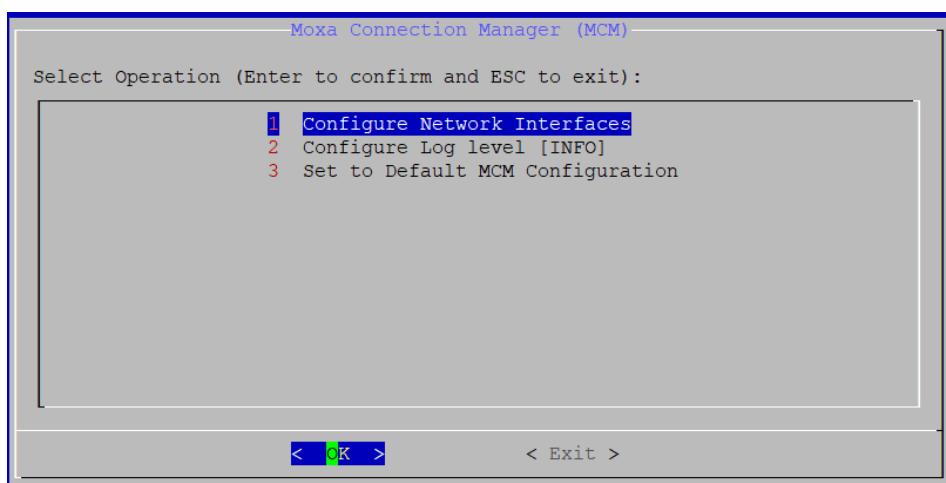


Figure 5.1 – Main page

Option Name	Description
Configure Network Interface	Configure network setting for each network interface
Configure Log Level	<ul style="list-style-type: none">Available syslog levels are ERR, WARN, INFO, DEBUG, TRACEMCM log is save in /var/log/syslog
Set to Default MCM Configuration	Set all configuration to default

2. Configure network type for each interface and set the WAN connection priority for failover/fallback.

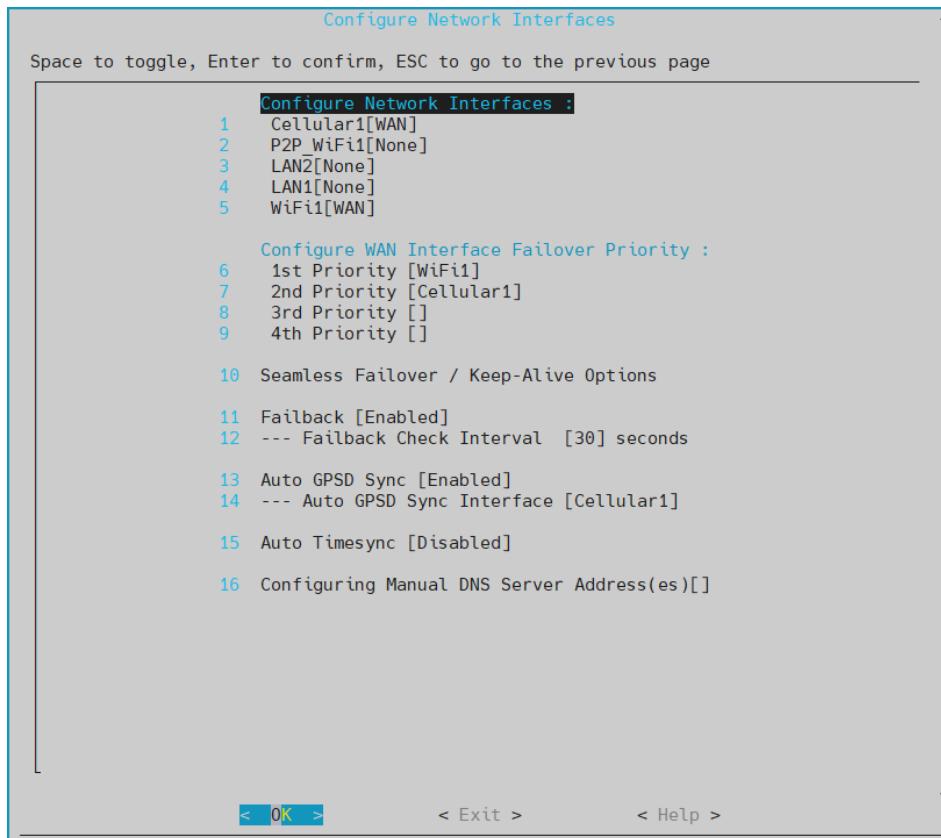


Figure 5.2 –Configure network interface

Option Name	Description
Configure Network Interfaces	<p>A list of available network interfaces will show, where you can set the network type for each interface. The options are:</p> <ul style="list-style-type: none"> • WAN - When set to WAN, this interface will be added to the default gateway list and allow MCM to apply automatic keep-alive and failover/fallback control over it • LAN - When set to LAN, MCM will connect this interface using the network attributes defined in Profile-1 and DHCP server can be enabled for this interface • LAN Bridge - Bridge two or more LAN interfaces to construct a larger LAN • Manual - When set to Manual, it allows the user to have total control over this interface. MCM will connect this interface one-time only network attributes defined in Profile-1. MCM will not set these interfaces as the default gateway nor apply connection keep-alive and failover/fallback control over it. • Multi-WAN - When set to Multi-WAN, it routes traffic to the interface from which it originates. • None - MCM will not manage this interface
Seamless Failover	<ul style="list-style-type: none"> • Disabled (default) - If the primary connection fails, MCM tries all pre-configured profiles before switching to the backup interface, causing some downtime during failback. • Enabled - If the primary connection fails, MCM will not attempt to try all the profiles configured for the primary connection. MCM will immediately switch to the connected backup interface, avoiding downtime. <p><i>Note: Using ping for the backup's keep-alive may incur data costs.</i></p>

Option Name	Description
Keep-Alive Option	<ul style="list-style-type: none"> Enabled (default) – All WAN interfaces managed by MCM have Keep-Alive enabled by default, regardless of whether they are configured as primary, secondary, or tertiary connections. This ensures that backup WAN interfaces stay connected, allowing an immediate failover if the primary interface becomes unavailable. Disabled – For backup WAN interfaces (such as secondary or tertiary), Keep-Alive can be disabled to reduce traffic costs caused by periodic connectivity checks (e.g., pinging an external server). <p><i>Note: In the previous MIL3, Keep-Alive is enabled by default only on the primary WAN interface.</i></p>
Configure WAN Interface Priority	MCM will use the WAN interface set as 1st Priority as the default gateway. When the 1st priority interface becomes unavailable, MCM will automatically failover to the next priority interface.
Auto Timesync	<ul style="list-style-type: none"> Disabled (default) – Disables the auto time-sync function. GPS – Syncs the system clock using GPS time. Requires a GPS antenna and the GPS function to be enabled. Chrony – Uses the Chrony service to sync the system clock via an NTP server. Cellular – Syncs the system clock using the cellular base station's time. A cellular connection is required.
Configure Manual DNS server Address(es)	This function allows you to manually specify DNS server addresses for the MCM to use for domain name resolution. If the DHCP server does not provide a DNS server, setting manual DNS addresses ensures that your system can still resolve domain names.

3. Configure individual network interface.

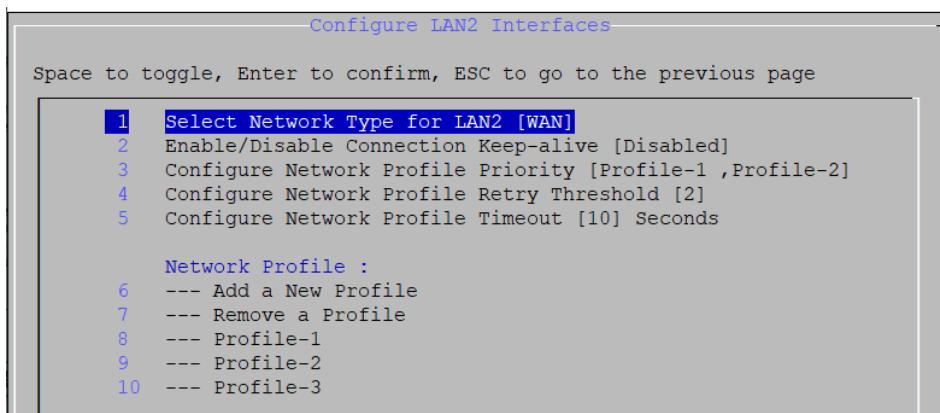


Figure 5.3 –Configurable options for WAN interface

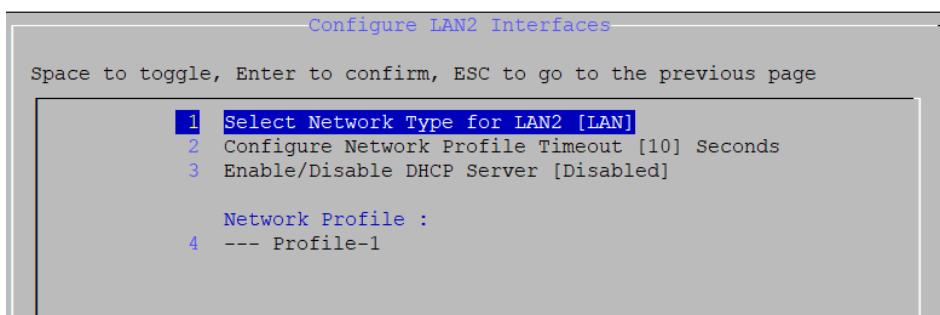


Figure 5.4 –Configurable options for LAN interface

Option Name	Network Type	Description
Select Network Type	All	Available options are WAN/LAN/LAN Bridge/Manual/Multi-WAN/None
Configure Network Profile Priority	WAN	When the 1st priority WAN network's profile cannot connect or becomes unavailable, MCM will automatically failover to the next profile in this priority list <i>Note: network profile failback is currently not supported</i>
Configure Network Profile Retry Threshold	WAN	This value determines the maximum attempts MCM will try to connect using the current WAN network profile before failover to the next profile in the priority list.
Configure Network Profile Timeout	All	This value (in seconds) determines the maximum time MCM will try to connect using the current network profile before determining the connection is unavailable
Bridge IPv4 Address	LAN-bridge	Assign a static IPv4 address for the bridged LAN interfaces
Bridge IPv4 Subnet Mask	LAN-bridge	Assign a static IPv4 subnet mask for the bridged LAN Interfaces
Enable/Disable DHCP Server	LAN, LAN-bridge	Configure a specific LAN or bridged LAN interfaces as DHCP server
Network Profile	WAN, LAN, Manual	<ul style="list-style-type: none"> This section displays all network profile in a list with option to add, modify or remove a profile. If network type is set to LAN or Manual, only profile-1 will be used because network profile failover is only available for WAN

4. Configure network profile of an interface.

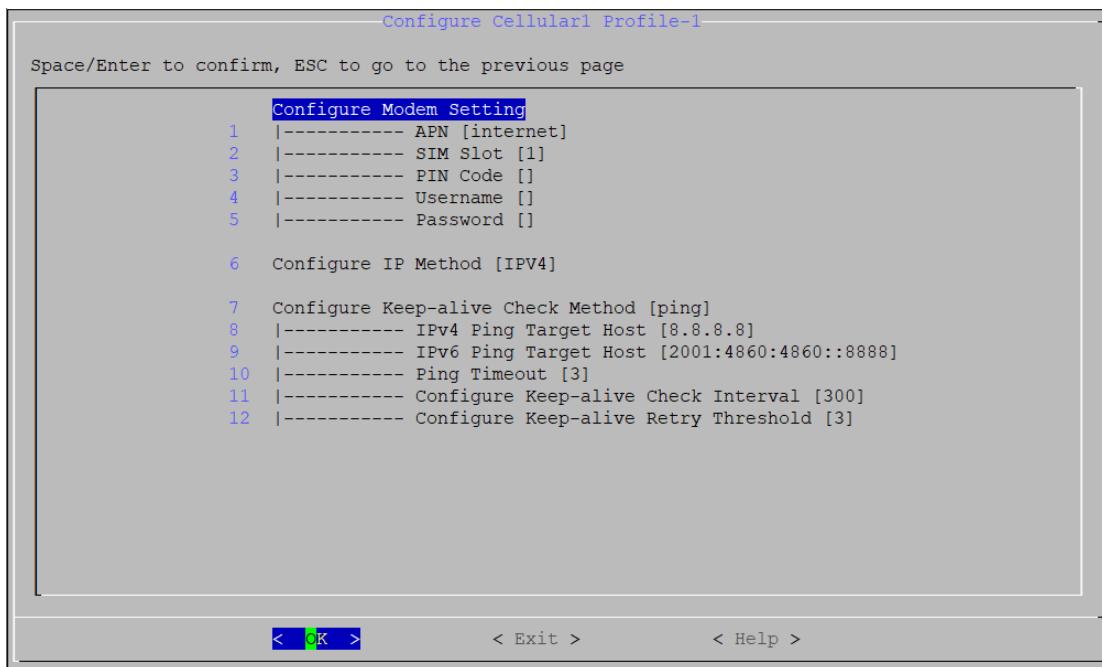
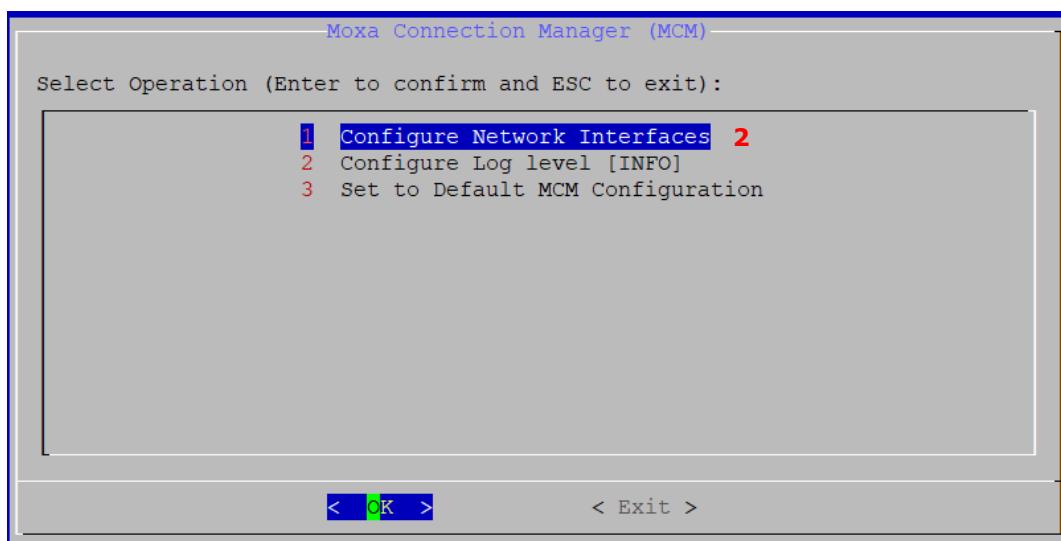


Figure 5.5 –Network profile setting (cellular interface as an example)

Option Name	Interface	Description
Configure Modem Setting	Cellular (WAN)	Configure cellular connection parameters including APN, SIM slot (which SIM slot number to use), PIN Code, Username, Password
	Wi-Fi (WAN)	Configure Wi-Fi connection parameters including Mode (only Wi-Fi client mode is supported), SSID, and Password Note: make sure to leave the password field empty if you are connecting to a public Wi-Fi without password
Configure IP Method	All interfaces	Configure IP related parameters including protocol version (IPv4, IPv6 or IPv4v6) and IP assignment method (DHCP, auto*, static IP or Link-local)

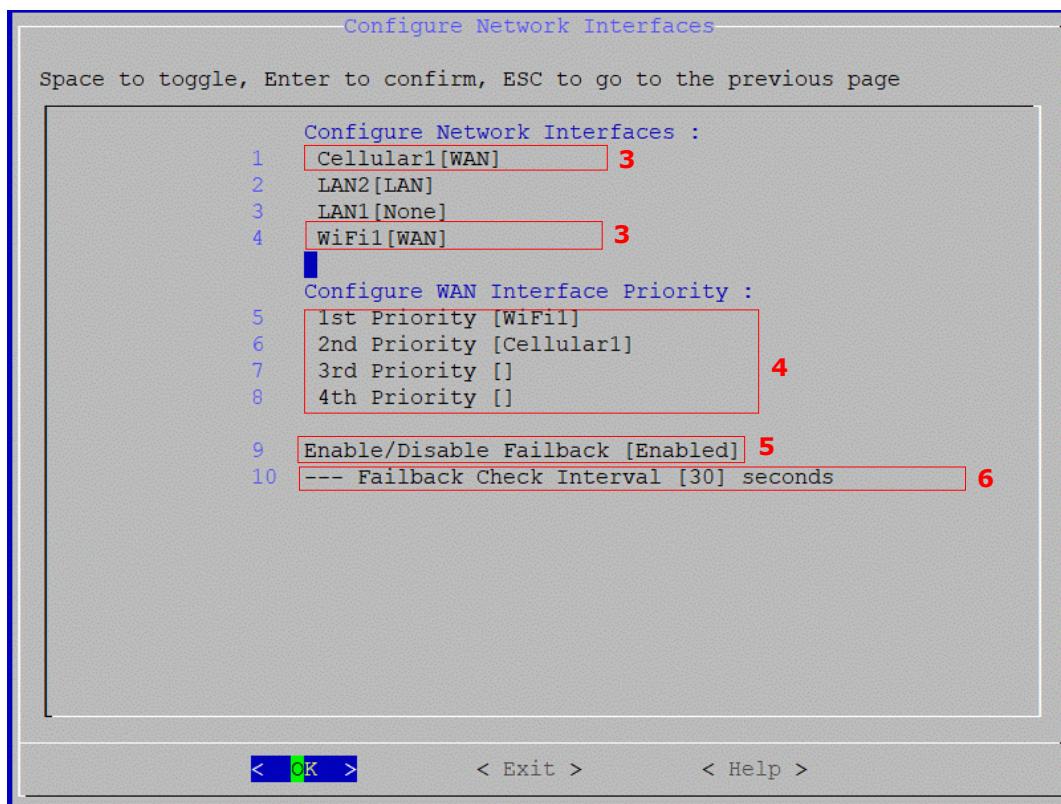
Option Name	Interface	Description
Configure Keep-alive Check Method	All interfaces	<p>Select the method to check connection is alive</p> <ul style="list-style-type: none"> • Ping: Connection is only considered alive if pinging the target server specified is successful <ul style="list-style-type: none"> ➢ Optionally, select "ping-signalmonitor" to also include signal strength as a criterion for a healthy connection. • Check-ip-exist: As long as an IP is assigned to the interface (e.g., the base station assigns IP to the cellular modem or DHCP server assigns IP to LAN port), are considered connection is alive <ul style="list-style-type: none"> ➢ Optionally, select "check-ip-exist-signalmonitor" to also include signal strength as a criterion for a healthy connection.

* IP assignment method "auto" is for IPv6 only, which support Stateless Address Auto-Configuration (SLACC) and Stateless for DHCPv6.


Cellular and Wi-Fi Failover/Fallback

One of the key features in MCM is WAN connection auto-failover, where you can configure multiple backup WAN networks. When the primary connection becomes unavailable, MCM will automatically fail over to the backup network depending on the priority you set. You can even configure the connection to fall back to the primary one when it is back online.

In below example, we will set Wi-Fi interface as the primary WAN network and Cellular(4G/LTE) as the backup. MCM will automatically switch to using Cellular(4G/LTE) when Wi-Fi is down and back to Wi-Fi when it is back online.


1. Run `# mx-connect-mgmt configure` to launch a simple GUI dialog configurator

```
root@moxa-tbbbb1182827:/# sudo mx-connect-mgmt configure
```


2. Select "Configure Network Interfaces"
3. Set interface Cellular1 and WiFi1 both to WAN, and
4. Set WiFi1 as the 1st priority and Cellular1 as 2nd priority
5. Make sure Fallback is enabled if you would like MCM to automatically switch back to Wi-Fi from cellular when it is back online.

6. Failback Check Interval [30] seconds mean MCM will make sure Wi-Fi connection is alive and stable for 30 seconds before failback to use Wi-Fi as the primary connection (default gateway). The purpose is to avoid unstable connections causing frequent failover and failback.

7. Go to the interface configuration page of WiFi1 and Cellular1 (Figure 5.5 is an example of Cellular)
8. The option “**Enable/Disable Connection Keep-alive**” is disabled by default. It means there will be a short period without network during Wi-Fi to cellular failover process since MCM will only initiate the cellular connection when failover is triggered.

You can enable this setting if a seamless failover experience is desired. When enabled, it allows MCM to failover to a ready-to-use backup connection without the initialization downtime.

NOTE

Enable/Disable Connection Keep-alive setting in this page has been replaced by “Seamless Failover” configuration in the main page since MCM v1.3.x, see [Figure 5.2 -Configure network interface](#)

9. MCM also supports network profile failover. For example, on a Moxa Arm-based computer with dual SIM slots, you can set up two profiles for cellular interface; each uses a different SIM slot and SIM card.
 - **Network Profile Priority:** in this example, MCM will use profile-1 by default and failover to use profile-2 when it cannot establish a connection with profile-1.
 - **Network Profile Timeout and Retry Threshold:** in this example, MCM will try to connect with profile-1 two times, each with a maximum of 90 seconds timeout before switching to profile-2.

10. You can modify the default profile-1 and profile-2 or add/remove a profile.

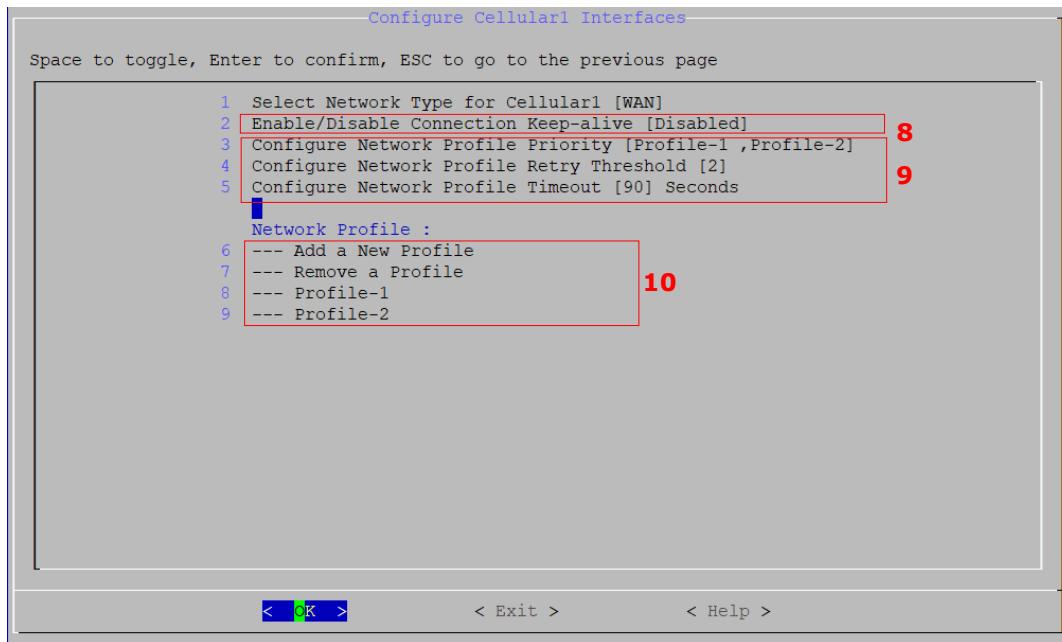


Figure 5.6 -Interface configuration page of Cellular1

11. Go to profile configuration page.
12. Configure the cellular modem related attribute. In this example, a SIM card in SIM slot 1 with PIN code "0000" and APN "internet" is used for Profile-1
13. Select the IP protocol generation. IPv4, IPv6, and IPv4v6 are the available options.
14. Select how MCM determine the connection is alive. Currently, only "ping" method is supported for WAN network. In this example, following configuration are set for Profile-1 of Cellular1 interface
 - MCM will ping the Google DNS once every 300 seconds.
 - MCM will try to ping the target host maximum 3 times (Retry Threshold) before concluding profile-1 cannot connect. For each ping attempt, MCM will consider ping fails if server doesn't response in 3 seconds (Ping timeout).
15. Once completed the configuration, exit MCM and select save and reload configuration file for the configuration to take effect

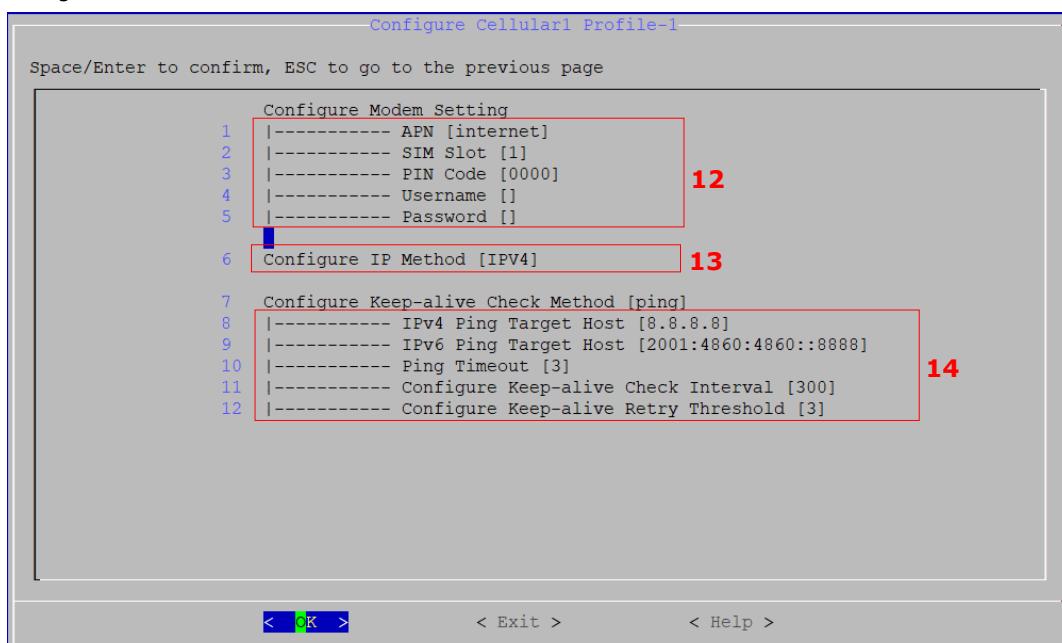
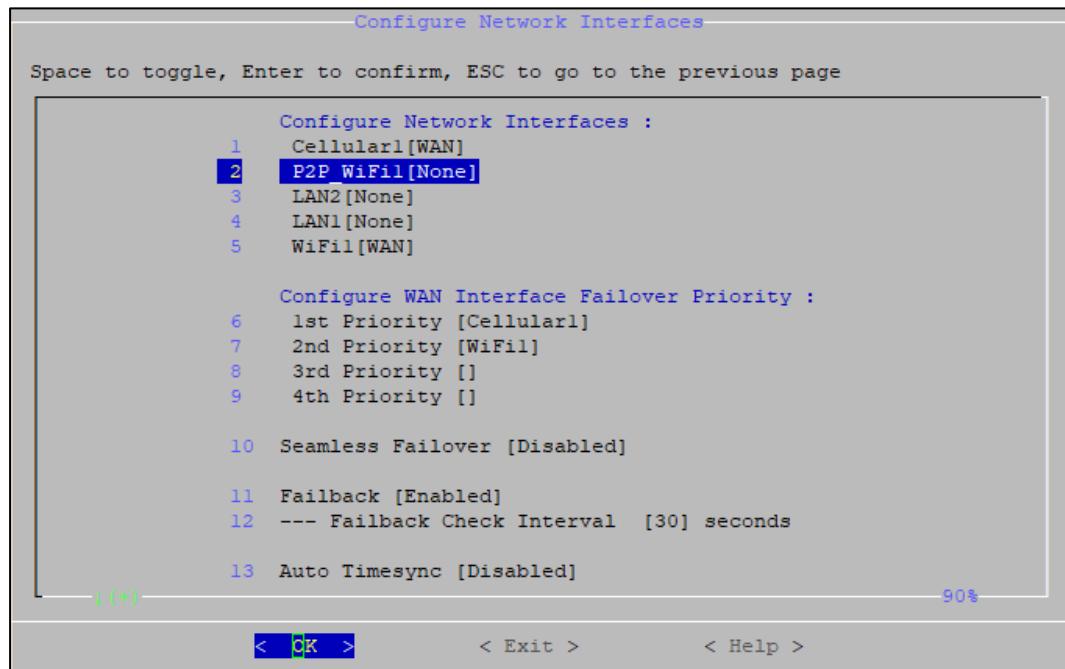
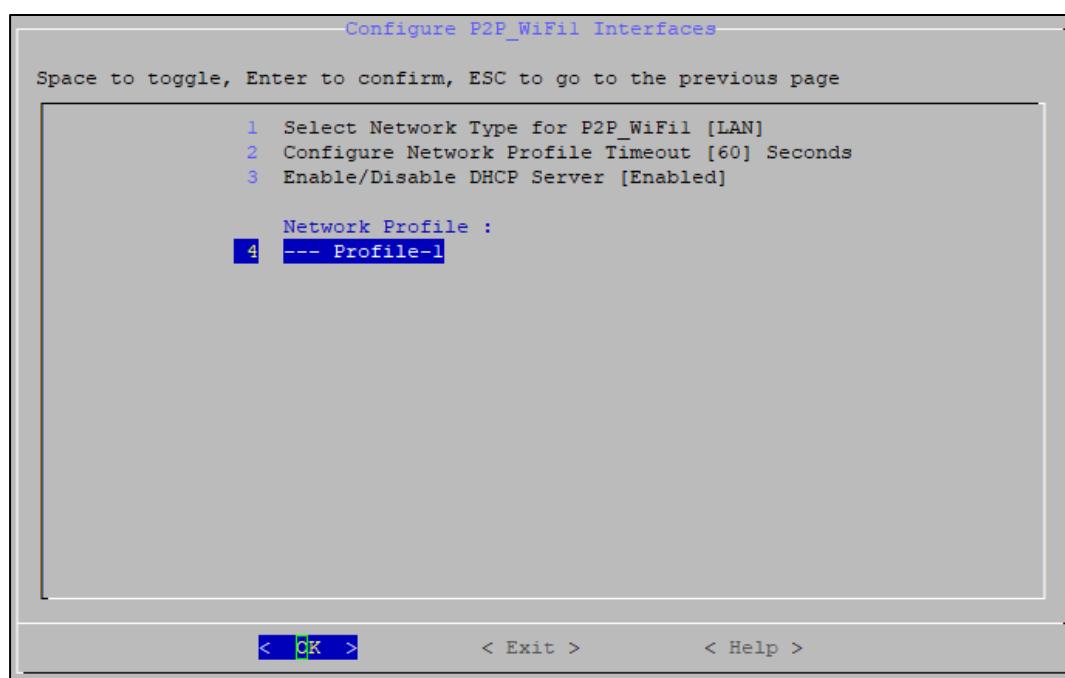
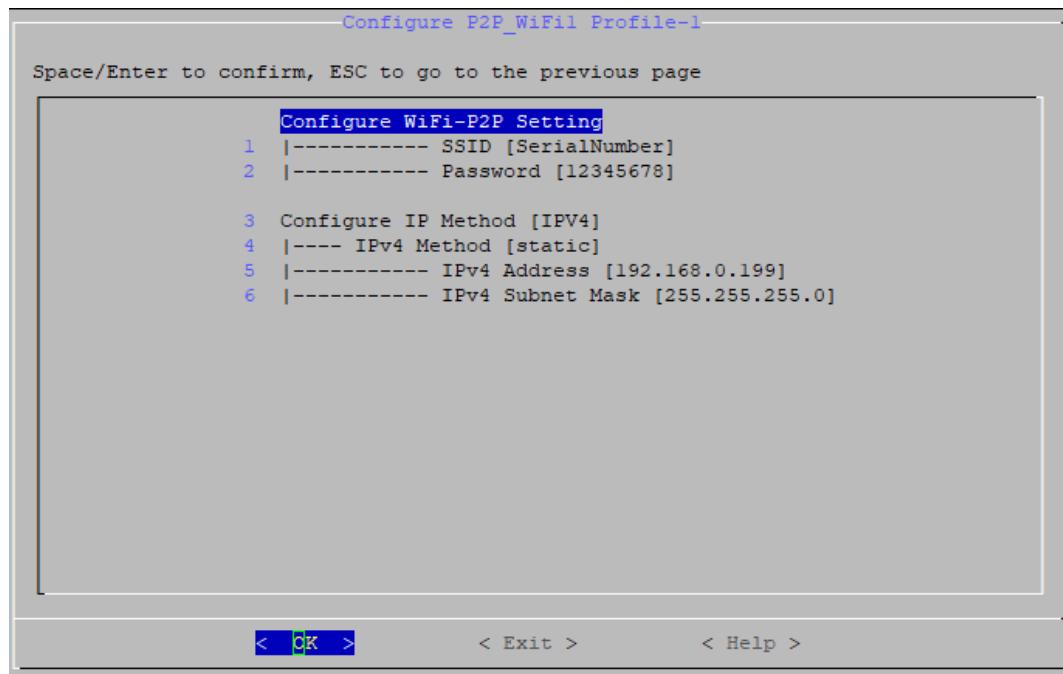
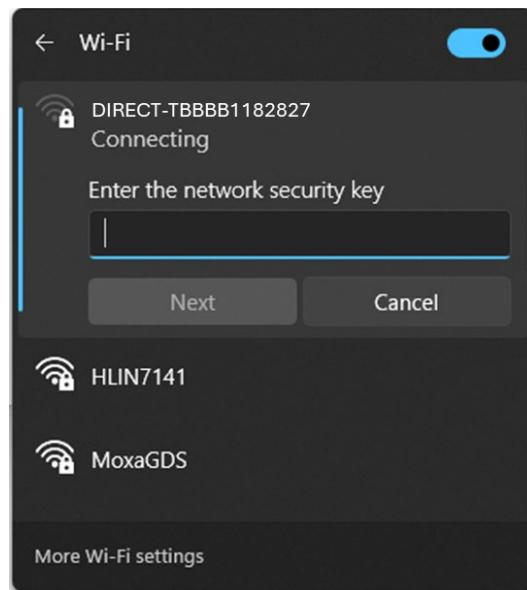



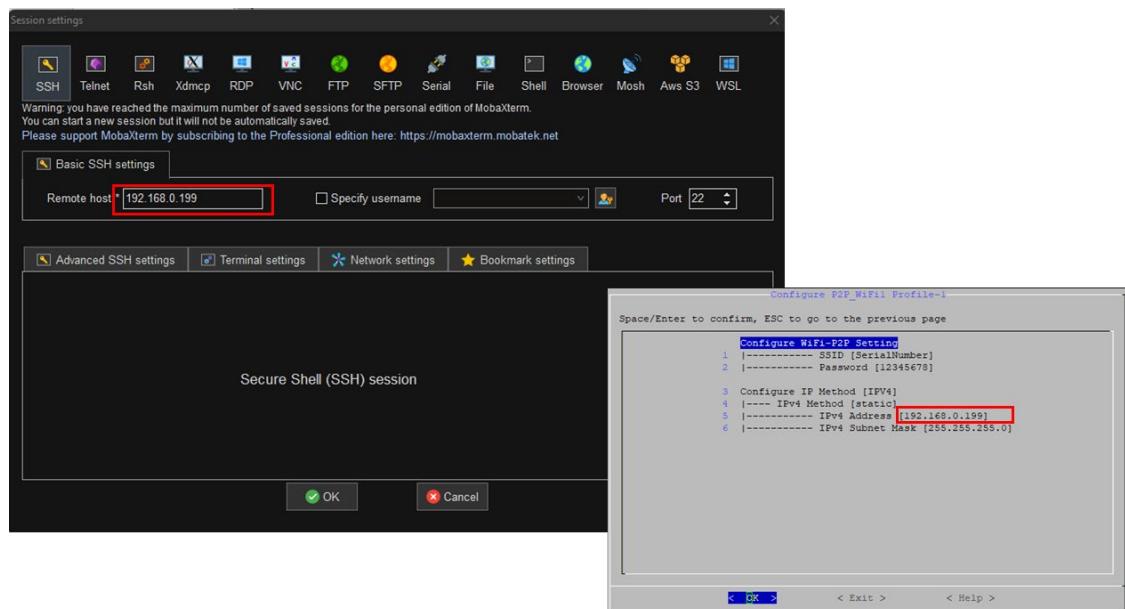
Figure 5.7-network profile configuration page of Cellular1 interface


Connecting via Wi-Fi P2P for Remote Access

Starting from MIL 3.2, MCM includes a feature that allows remote access to Moxa computers via WiFi P2P. This is useful for remote debugging when a cellular connection is unavailable, and the device is in a difficult-to-access location without wired connections. WiFi P2P can be enabled alongside Wi-Fi client mode, allowing simultaneous peer-to-peer communication and internet access through a Wi-Fi network, providing flexibility in maintaining connectivity while troubleshooting.


1. If your Moxa computer has a supported Wi-Fi module installed, P2P WiFi will show up as an interface


2. Enable P2P WiFi interface and configure the profile


3. Configure the SSID and Password. The default SSID is DIRECT-[Moxa computer's serial number]

4. On another device with Wi-Fi, search for the configured Wi-Fi SSID and enter the password.

5. You can now remotely access the Moxa computer via SSH using the static IPv4 address set in the P2P WiFi profile.

Software Wi-Fi AP for Remote Access

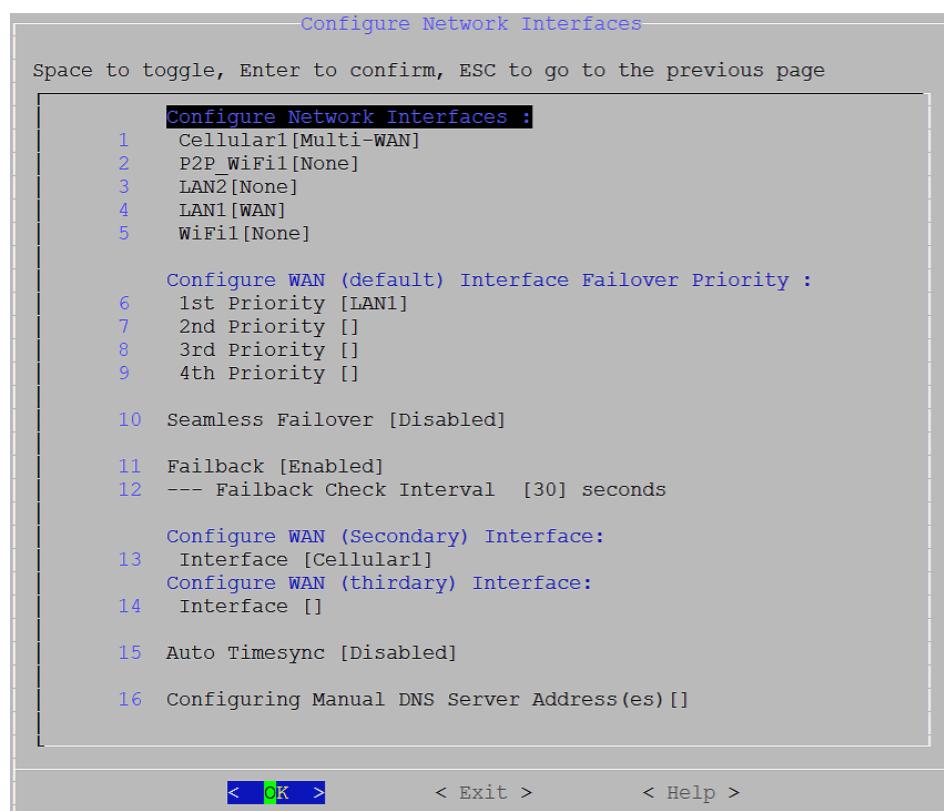
The software Wi-Fi Access Point (AP) feature enable local Wi-Fi clients to connect to Moxa computers. This function facilitates seamless connectivity for up to three Wi-Fi clients within the same local network, serving as a lightweight hub for non-critical data exchange.

NOTE

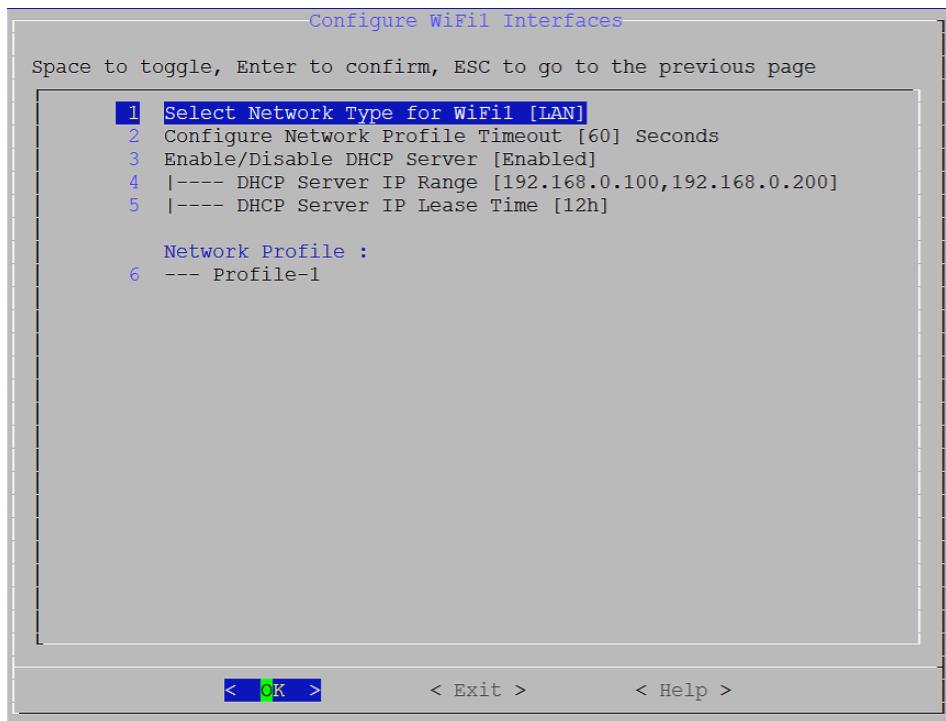
The software Wi-Fi AP does not provide WAN (Internet) connectivity.

It operates only as a local network for secure, isolated communication between Wi-Fi clients and the device.

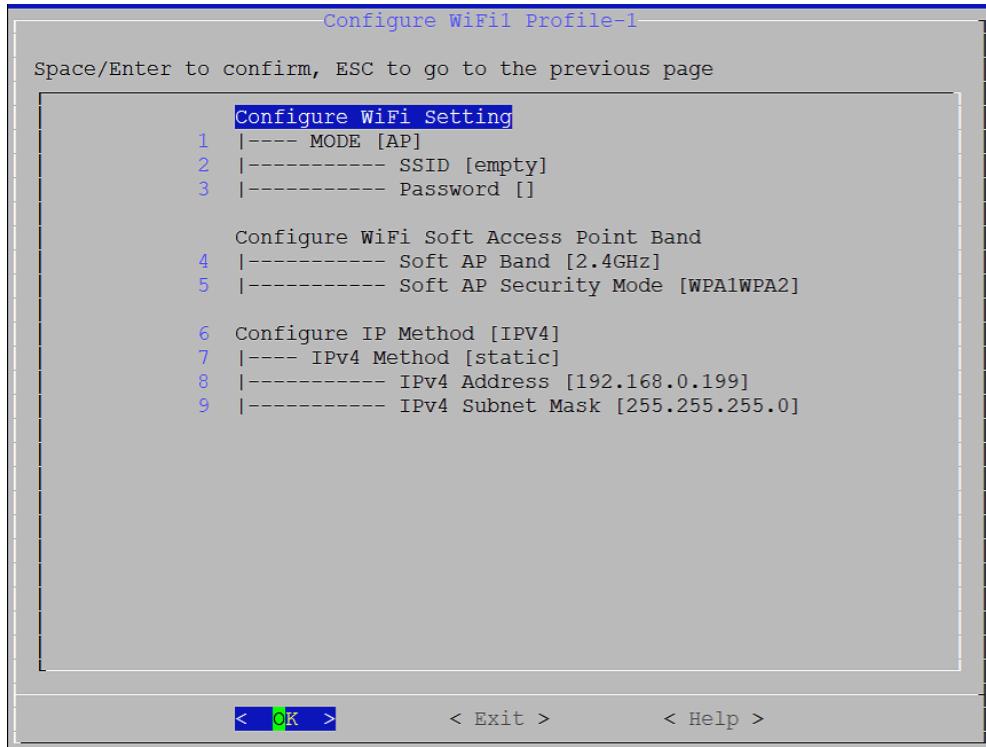
- **Applicable Products:** UC-2200A, UC-4400A, and UC-8600A Series.
- **Client Limit:** The software Wi-Fi AP supports up to 3 simultaneous clients to ensure reliable performance on resource-constrained IIoT gateways.
- **Non-critical Data Focus:** The feature is optimized for troubleshooting and non-critical data exchange (e.g., logs, configuration data) and is not intended for latency-sensitive or high-bandwidth applications, such as real-time control or critical data transmission.
- **No WAN Bridging:** The software Wi-Fi AP operates in a local network mode and does not provide internet or WAN access, enhancing security by isolating local communications from external networks.
- Either Software Wi-Fi AP or WiFi P2P can be enabled.


Target Use Case Scenarios

- **Field Diagnostics and Maintenance:** Technicians can use a laptop or mobile device to connect to Moxa computer's Wi-Fi AP for real-time monitoring, log retrieval, or firmware updates in remote or hazardous locations, such as oil rigs or wind turbines, where wired access is impractical.
- **Temporary Device Integration:** During commissioning or testing, the software Wi-Fi AP allows temporary connection of sensors or devices (e.g., temperature or pressure sensors) to Moxa computers for data collection, enabling rapid prototyping or proof-of-concept deployments without modifying existing network infrastructure.
- **Local Data Aggregation:** In small-scale IIoT deployments, such as a factory floor or a smart warehouse, the Wi-Fi AP enables devices like handheld scanners or IoT sensors to share non-critical data (e.g., inventory updates or environmental readings) within the local network, streamlining operations without relying on external networks.
- **Training and Demonstration:** The Wi-Fi AP can be used to showcase Moxa computer's functionality in training sessions or customer demos, allowing multiple devices to connect and interact with the gateway in a controlled, local environment.

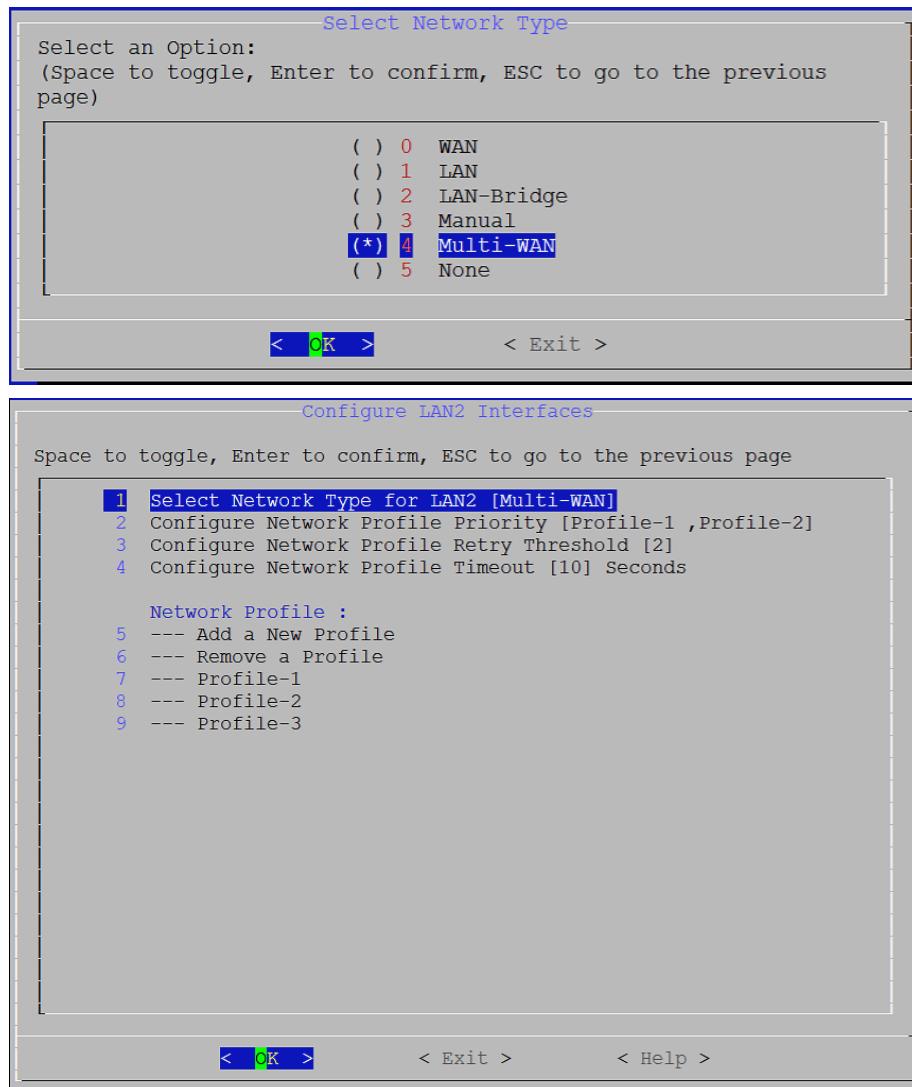

Setting Up a Software Wi-Fi AP

1. Identify the software Wi-Fi interface to configure.

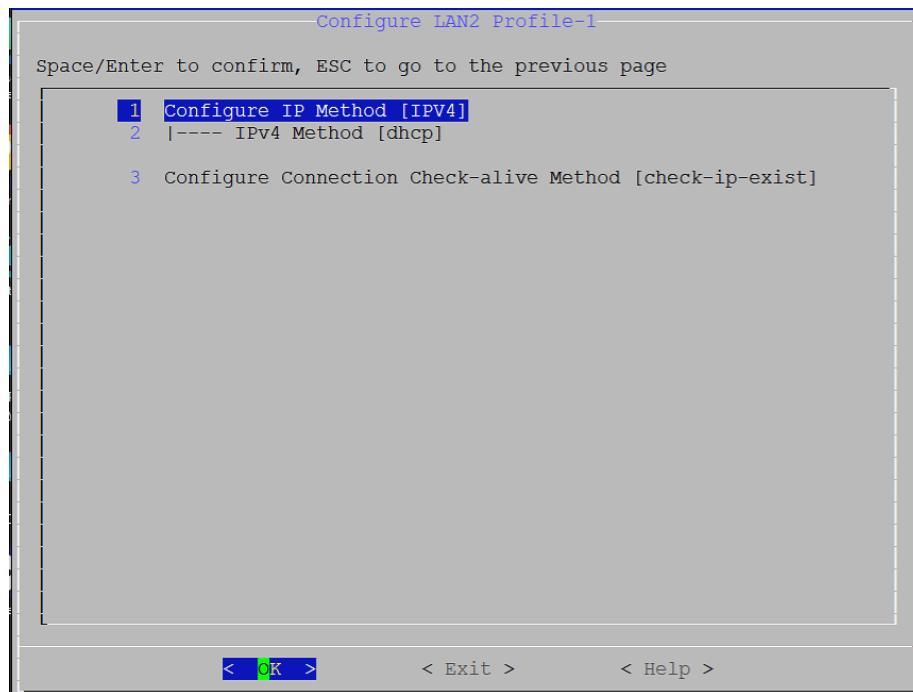

If your Moxa computer has a supported Wi-Fi module installed, the software Wi-Fi AP will show up as the LAN interface **WiFi [LAN]**.

2. Enable **WiFi1 [LAN]** interface and configure the profile

3. Configure the SSID, Password and an IP address for the connected Wi-Fi clients.


You can now remotely access the Moxa computer via SSH using the static IPv4 address set in the WiFi1 profile or access another Wi-Fi client that also connects to the Moxa computer.

Setting Up a Multi-WAN Interface on LAN


Moxa computers support multiple WAN options, allowing the configuration of several interfaces as WANs. The Multi-WAN function intelligently routes traffic to the interface from which it originates, ensuring efficient and secure data flow in distributed IIoT environments. The function enhances network reliability by leveraging diverse connectivity options (e.g., Ethernet and cellular) to prevent single points of failure, which is critical for applications like remote monitoring and industrial automation. By maintaining traffic origin integrity, the function simplifies policy routing and optimizes bandwidth usage without requiring complex configurations.

The following configuration example sets up LAN2 as a Multi-WAN interface:

1. Enable **LAN2 [None]** interface and configure the profile.

2. Configure IP Method and Check-alive Method.

Checking the Network Status

Checking the Interface and Connection Status

- Use `# sudo mx-connect-mgmt nwk_info [Interface name]` to check the interface and connection status
- Use `# sudo mx-connect-mgmt nwk_info -a [Interface name]`

```
-----  
Interface Name      : Cellular1  
Enabled            : true  
WAN Priority       : 1  
Device Name        : cdc-wdm0  
Device Type        : Modem  
Network Ifname    : wwan0  
Network Type       : WAN  
Mac Address        :  
IPv4 Method        : dhcp  
IPv6 Method        :  
-----  
Modem State        : Connected  
-----  
Radio Access Tech  : LTE  
Signal Strength    : Poor  
Operator Name      : Chunghwa Telecom  
Unlock Retries    : SIM PIN(3)  
SIM Slot           : 2  
IMSI               : 466924253357038  
APN                : internet(Auto)  
ICCID              : 89886920042533570383  
Cell ID/TAC        : 01C10722/2EE0  
LTE RSRP           : -94 dBm  
LTE RSSNR          : 0 db  
Modem Version     : 25.30.626 1 [Jun 07 2021 06:00:00]  
Modem Name         : Telit LE910C4-WWDX 1.00  
IMEI               : 353338974279918  
-----  
Connection Status  : Connected  
Default Route      : true  
-----  
IPv4  | Address    : 25.8.139.168  
      | Netmask     : 255.255.255.240  
      | Gateway     : 25.8.139.169  
      | Primary DNS : 168.95.1.1  
      | Secondary DNS: 168.95.192.1  
-----  
IPv6  | Address    :  
      | Netmask     :  
      | Gateway     :  
      | Primary DNS :  
      | Secondary DNS:
```

Figure 5.8 –an example of `nwk_info` result of interface `Cellular1`

Most of the data fields and values are self-explanatory. Below are additional details to some of the data fields:

Fields	Description	Available Interface
Enabled	<ul style="list-style-type: none"> True: This interface is managed by MCM False: This interface is not managed by MCM 	Wi-Fi, Ethernet, Cellular
WAN priority	The WAN priority set in Figure 5.2	Wi-Fi, Ethernet, Cellular
Network Type	WAN/LAN/Manual/None according to the set value in Figure 5.2	Wi-Fi, Ethernet, Cellular
Modem State	<ul style="list-style-type: none"> Not Ready: The cellular modem can't be detected, or some configuration is not set correctly in MCM configuration files. Initializing: The cellular is initializing SIM PIN Locked: SIM PIN is locked; you can unlock with unlock_pin command SIM PUK Locked: SIM PUK is locked; you can unlock with unlock_puk command Radio Power Off: The cellular modem is entering flight mode Radio Power On: The cellular modem is exiting flight mode Searching Base Station: The cellular modem has exited flight mode and searching for base-station Attached to Base Station: The cellular modem is registered with a network provider but without data connections. Connecting: The cellular modem is connecting Connected: The cellular modem is connected No SIM: SIM card is missing or malfunctioning 	Cellular only
Radio Access Tech	GSM/GSM COMPACT/UMTS/LTE/5G SA/5G NSA, etc.	Cellular only
Signal Strength	<ul style="list-style-type: none"> None/Very Poor Poor Fair Good Excellent <p><i>Note: see cellular signal strength for defined criteria</i></p>	Cellular only
SIM Slot	The SIM slot number being used	Cellular only
Connection Status	<ul style="list-style-type: none"> Initializing: Initializing network connection Device Ready: Detected the network interface is ready Connecting: Connecting according to setting in profile Configuration Error: Profile configuration error Disabling: Stopping the connection Disabled: When an interface is not managed by MCM, or MCM service is stopped Connected: Connection is "working". The criteria for "working" are determine by the Keep-alive Check Method in Figure 5.5. For example, if method is set to ping, the connection is consider working if ping is successful Unable to connect: The network profile is set correctly but the connection is not working determined by the Keep-alive Check Method in Figure 5.5 Reconnecting: Connection is being reconnecting 	Wi-Fi, Ethernet, Cellular
Default Route	<ul style="list-style-type: none"> True: This interface is currently being used as default route False: This interface is not the default route 	Wi-Fi, Ethernet, Cellular

Cellular Signal Strength

Signal Indicator

1. 3G Signal Indicators:
 - **RSSI** (Received Signal Strength Indicator): Measures the received signal strength in dBm.
 - **EC/IO** (Energy per Chip over Interference): Indicates the signal quality by measuring the ratio of the received energy per chip to the interference level, in dB.
2. 4G Signal Indicators:
 - **RSRP** (Reference Signal Received Power): Represents the power of the reference signal in dBm, used to assess the signal strength in LTE networks.
 - **RSSNR** (Reference Signal Signal-to-Noise Ratio): Measures the quality of the reference signal by evaluating the signal-to-noise ratio in dB.
3. 5G Signal Indicators:
 - **RSRP** (Reference Signal Received Power): Measures the power of the 5G reference signal when connected to a 5G cell, similar to SA.
 - **SINR** (Signal-to-Interference-plus-Noise Ratio): Reflects the quality of the 5G signal, considering the presence of 4G signals in the same environment.

Signal Level Criteria

MCM determines the cellular signal level based on the measured radio metrics.

Each technology (3G, 4G, 5G NSA, 5G SA) uses two KPIs to evaluate the signal quality.

Signal Level Decision Logic

1. Each RAT (3G/4G/5G) has a defined **signal level threshold table**
2. The signal level is determined when **both** KPIs meet the threshold of that level
3. If the two KPIs fall into **different levels, the lower level will be used**
(e.g., RSRP = Excellent but RSSNR = Fair → overall level = Fair)

4G(LTE) Signal Level	RSRP (dBm)	RSSNR (db)
Good	≥ -90	≥ 10
Fair	$-105 \leq x < -90$	$5 \leq x < 10$
Poor	$-125 \leq x < -105$	$x < 5$
None/Very Poor	$x < -125$	-

NR NSA Signal Level	LTE RSRP (dBm)	LTE RSSNR (db)	5G RSRP (dBm)	5G SINR (dBm)
Good	≥ -90	≥ 10	≥ -80	≥ -10
Fair	$-105 \leq x < -90$	$5 \leq x < 10$	$-90 \leq x < -80$	$-12 \leq x < -10$
Poor	$-125 \leq x < -105$	$-20 \leq x < 5$	$-110 \leq x < -90$	$-16 \leq x < -12$
No Signal	$x < -125$	$x < -20$	$x < -110$	$x < -16$

NR SA Signal Level	RSRP (dBm)	SINR (db)	NR SINR (dB)
Good	≥ -80	≥ -10	≥ 15
Fair	$-90 \leq x < -80$	$-12 \leq x < -10$	$5 \leq x < 15$
Poor	$-110 \leq x < -90$	$-16 \leq x < -12$	$-20 \leq x < 5$
No Signal	$x < -110$	$x < -16$	$x < -20$

3G(UMTS) Signal Level	RSSI (dBm)	EC/IO (db)
Excellent	≥ -77	≥ -6
Good	≥ -87	≥ -10
Fair	≥ -97	≥ -14
Poor	≥ -107	≥ -20
None/Very Poor	$x < -107$	$x < -20$

Monitoring the Data Usage

Use `# mx-connect-mgmt datausage` to check the data usage of a specified interface between a specified start and end date

```
moxa@moxa-tbbbb1182827:# sudo mx-connect-mgmt datausage -h

mx-connect-mgmt-datausage
Show interface data usage information and related functions

USAGE:
  mx-connect-mgmt datausage [FLAGS] [OPTIONS] [interface]

FLAGS:
  -h, --help      Prints help information
  -r, --reset     data usage database

OPTIONS:
  -s, --since <date>    Sets the begin date of data usage cumulative period,
                        expected date format YYYY-MM-DD HH:MM or YYYY-MM-DD
  -t, --to <date>       Sets the end date of data usage cumulative period,
                        expected date format YYYY-MM-DD HH:MM or YYYY-MM-DD

ARGS:
  <interface>
```

Below is an example of how to check the data usage of Wi-Fi interface between 2022/7/3 and 2022/7/4

```
moxa@moxa-tbbbb1182827:# sudo mx-connect-mgmt datausage --since 2022-07-03 --to
2022-07-04 WiFi1
moxa@moxa-tbbbb1182827:
rx: 21884544 bytes
tx: 116086 bytes
```

Upgrading the Cellular Modem Firmware

Use `# mx-connect-mgmt modem upgrade [Interface name]` will check and install the latest cellular modem firmware tested by Moxa from Moxa APT server.

- Your cellular network will be down temporary during the upgrade and the connection will be reconnected by MCM after the upgrade is complete
- You can also upgrade the firmware locally by specifying a file path following `-F` or `--filepath` option
- By default, firmware downgrade is not allowed and not recommended. If you insist to downgrade the firmware, you can add `-f` flag to force the downgrade.
- You can use `mx-connect-mgmt nwk_info [interface name] -a` command to check the current cellular modem firmware version
- MCM will perform auto-reinstallation if upgrade fails.

```
moxa@moxa-tbbbb1182827:/# sudo mx-connect-mgmt modem upgrade -h
mx-connect-mgmt-modem-upgrade
Upgrade modem FWR

USAGE:
  mx-connect-mgmt modem upgrade [FLAGS] [OPTIONS] [interface]

FLAGS:
  -f                  force upgrade FWR
  -h, --help      Prints help information

OPTIONS:
  -F, --filepath <filename>    Sets the FWR file path

ARGS:
  <interface>
```

An example of automatically updating the cellular modem firmware from Moxa APT server is given below:

```
moxa@moxa-tbbbb1182827:/# sudo mx-connect-mgmt modem upgrade Cellular1
```

An example of manually updating the cellular modem firmware by specifying a firmware file is given below:

```
moxa@moxa-tbbbb1182827:/# sudo mx-connect-mgmt modem upgrade Cellular1 -F /etc/firmware/Telit-LE910C4-EU-Info-1.1.0
```

An example given below indicates how to manually force the cellular modem firmware update even if the current firmware is newer than the provided firmware:

```
moxa@moxa-tbbbb1182827:/# sudo mx-connect-mgmt modem upgrade Cellular1 -f -F /etc/firmware/Telit-LE910C4-EU-Info-1.0.0
```

Cellular Network Diagnosis

Use `# mx-connect-mgmt debug` to perform diagnosis on the cellular network if you have trouble getting it to connect. The diagnosis tool can identify common issues such as missing antenna, weak signal strength, SIM card pin code error, SIM locked, etc.

```
moxa@moxa-tbbbb1182827:# sudo mx-connect-mgmt debug -h
mx-connect-mgmt-debug
Debug and diagnose cellular connection

USAGE:
  mx-connect-mgmt debug [SUBCOMMAND]

FLAGS:
  -h, --help      Prints help information

SUBCOMMANDS:
  diag           Perform diagnosis on the cellular interface
  help           Prints this message or the help of the given subcommand(s)
  listen         Listen to properties changed
```

Using API to Retrieve the MCM Status

MCM provides C application programming interfaces (APIs) for developer to retrieve various network and interface status from MCM

Please refer to following link for the C API document

<https://moxa.gitlab.io/open-source/linux/gitbook/moxa-connection-manager-reference-manual/MCM/Libmcm>

To integrating your applications securely with the MC C API, you should follow the below guideline:

1. Confirm that the return value of the API is 0 and the returned struct pointer is not NULL to avoid using the wrong memory address.
2. Always free the structure pointer returned by the API to avoid memory leak.

How to Migrate From `cell_mgmt` to MCM

For instructions on migrating from `cell_mgmt` in MIL1 to **Moxa Connection Manager (MCM)** for cellular connection management, see [cell_mgmt to MCM migration](#).

6. System Installation and Update

In this chapter, we will explain how to install and update **Moxa Industrial Linux (MIL)** and the **bootloader**. The MIL image file can be downloaded from the official product page for the Moxa computer series.

For example, the image for the **UC-3400A** can be found at:

<https://www.moxa.com/en/products/industrial-computing/arm-based-computers/uc-3400a-series#resources>

Full System Installation Using .img File

Using a TFTP Server From Bootloader Menu

Refers to instruction in [Accessing Bootloader Menu](#) section.

NOTE

TFTP update is disabled in Secure model by default due to TFTP is not a secure transmission protocol.

Using a USB/SD From Bootloader Menu

Refers to instruction in [Accessing Bootloader Menu](#) section.

Automatic Installation From a USB or SD

Beside manually installing the system image from bootloader menu, you can also trigger the image installation process within the operating system using `sudo mx-boot-mgmt image_auto_install` command. Once this process is triggered, the Arm-based computer will automatically install the specified system image in the USB or SD attached to the system. The new image will be available upon the next system boot-up.

NOTE

The format supported for USB and SD are FAT32 and ext4, respectively.

Command	Description
<code>-d, --disk</code>	Display the name of the external storage (e.g., USB, SD) where the image file is located. You can use the <code>mx-interface-mgmt disk</code> command to query the external storage name.
<code>-f, --file</code>	Specify the name of the image file in the external storage <ul style="list-style-type: none">• You can also use an absolute path starting from MIL 3.2
<code>-h, --help</code>	Display the available commands with a brief description

Following is an example of the automatic installation of the system image from a USB device:

1. Use `mx-interface-mgmt disk` command to check the name of available storage device name.

```
moxa@moxa-tbzkb1090918:~# sudo mx-interface-mgmt disk
NAME      DEVICE          SYSTEM_DISK  NUMBER_OF_PARTITIONS  AUTOMOUNT_SETTING
USB       /dev/sda        N             1                   false
eMMC     /dev/mmcblk0     Y             4                   false
```

2. Mount the USB if it is not already mounted. Refer to [Storage and Partition](#) section for detail.

```
moxa@moxa-tbzkb1090923:~$ sudo mx-interface-mgmt partition
NAME      DEVICE          IS_MOUNTED  FS_TYPE  MOUNTPOINT
eMMC_p1  /dev/mmcblk0p1  Y           ext4     /boot_device/p1
eMMC_p2  /dev/mmcblk0p2  Y           ext4     /boot_device/p2
eMMC_p3  /dev/mmcblk0p3  Y           ext4     /boot_device/p3
eMMC_p4  /dev/mmcblk0p4  Y           ext4     /boot_device/p4
USB_p1   /dev/sdb1       N           N/A      N/A

moxa@moxa-tbzkb1090923:~$ sudo mx-interface-mgmt partition USB_p1 mount
```

3. Configure an auto-installation event in partition 1 of the USB device with the image file **IMG_UC-3400A_MIL4_V1.0.0.img**:

```
moxa@moxa-tbzkb1090918:~# sudo mx-boot-mgmt image_auto_install -d USB -f
IMG_UC-3400A_MIL4_V1.0.0.imgg
```


NOTE

- Ensure that the image file and sha256/512 hash files are available in partition 1 of USB or SD before configuring the event.
- For Secure models, the digital signature file (.sha256.bin.signed or .sha512.bin.signed) must also be placed alongside the image file.

4. Reboot the system to trigger the auto installation of the system image from the USB device.

```
moxa@moxa-tbzkb1090918:~# sudo reboot
```

Offline or Online Upgrade from MIL

Moxa Software Updater (MSU) is a Moxa utility for performing both offline and online software upgrades to update the MIL version on Moxa computers. For offline upgrades, two types of upgrade packages are available: the **Upgrade Pack** and the **Refresh Upgrade Pack**.

- The **Upgrade Pack upgrades** the system while preserving user data and configurations. It contains only the differences between the current and target versions, making it significantly smaller in size.
- The **Refresh Upgrade Pack** performs a full system upgrade by wiping all user data and restoring the system to its factory default environment. This pack contains all the files from the target version and is, therefore, larger in size.

Moxa Software Updater (MSU) includes built-in integrity and authenticity checks. Each upgrade pack is accompanied by a **SHA-512 hash file** and a **digitally signed version** of that hash (.sha512 and .sha512.bin.signed). During the upgrade process, the system automatically verifies the **SHA-512 hash** of the upgrade package to ensure file integrity. It then validates the **digital signature** using a trusted public key to confirm the authenticity of the package.

NOTE

- MIL3 to MIL4 upgrade is not available via Moxa Software Updater (MSU).
- If either the hash or signature verification fails, the upgrade process is immediately aborted to prevent tampering or unauthorized updates.

NOTE

The Moxa Industrial Linux (MIL) kernel and Moxa-developed packages are available pre-configured on the Moxa APT repository when you enable updates via APT. However, we first recommend using `mx-sw-updater` command to resolve package dependency issues and update the MIL3 kernel before the APT package update. If you want to exclusively upgrade from the APT repository, run the `apt full-upgrade` command to minimize dependency issues.

To use Moxa Software Updater (MSU), run `# sudo mx-sw-updater [command]`.

Command and Usage	Description
configure [flags]	<p>The <code>mx-sw-updater configure</code> command sets up an offline upgrade pack (root required). It prepares the upgrade or refresh pack and verifies it with a signature file. This step ensures that the package and metadata are copied and configured to the device's local cache before upgrading.</p> <p>Key Flags</p> <ul style="list-style-type: none">• <code>-p, --path</code>: Specifies the path to the upgrade pack or refresh upgrade pack.• <code>-s, --signature</code>: Provides the path to the signature file for verification. If not specified, it will attempt to find a matching signature file in the same directory.
clear	Clears the package file and metadata copied to the device's local cache after the completing the upgrade.
update	The <code>mx-sw-updater configure</code> command fetches the latest metadata from the Moxa Apt Repository to the device's local cache. This command ensures that the system's package information is up-to-date and ready for installing or upgrading packages.
upgrade [flags]	<p>The <code>mx-sw-updater configure</code> command updates the system to a target official version while preserving user data and configurations, with options to perform the upgrade using a local package or remote APT server with automatic recovery. This command requires root privileges.</p> <p>Key Flags</p> <ul style="list-style-type: none">• <code>-l, --latest</code>: Upgrade to the newest version in the local cache• <code>--remote</code>: Upgrade remotely via the APT server (default option).• <code>--local</code>: Upgrade using the local upgrade pack• <code>--system-fallback</code>: Performs the upgrade with system fallback enabled to ensure auto system recovery if the upgrade fails.• <code>-r, --release <string></code>: Upgrades to a specified target version (e.g., <code>-r V1.1</code>).
Refresh-upgrade [flags]	<p>The <code>mx-sw-updater refresh-upgrade</code> command upgrades the system by wiping all user data and restoring it to the factory default environment. Unlike the <code>mx-sw-updater upgrade</code> command, which preserves user data, the <code>refresh-upgrade</code> command resets the system to its original state. This command supports only local upgrades and requires root privileges.</p> <p>Key Flags</p> <ul style="list-style-type: none">• <code>-l, --latest</code>: Upgrade to the newest version in the local cache.• <code>--system-fallback</code>: Performs the upgrade with fallback enabled, ensuring automatic system recovery if the upgrade fails.• <code>-r, --release <string></code>: Upgrade to a specified target version (e.g., <code>-r V1.1</code>).

Command and Usage	Description
show [flags]	<p>The <code>mx-sw-updater show</code> command displays details about the upgrades that have been added to the device's local cache via the <code>mx-sw-updater configure</code> and <code>mx-sw-updater update</code> commands. The details include the version number, supported Moxa computer models, and the changelog.</p> <p>Key Flags</p> <ul style="list-style-type: none"> • <code>-a, --all</code>: Shows information of all available upgrades. • <code>-l, --latest</code>: Displays information of the newest upgradable version. • <code>-r, --release <string></code>: Shows details of a specified upgradable version (e.g., <code>-r V1.1</code>). • <code>--from <string></code>: Specifies the starting version for a range. • <code>--to <string></code>: Specifies the ending version for a range. <p><i>Note: The --from and --to flags can be used together to display information for a range of versions</i></p>
status [flags]	<p>The <code>mx-sw-updater status</code> command provides information about the current status of upgrade packages that have been added to the device's local cache via the <code>mx-sw-updater configure</code> and <code>mx-sw-updater update</code> commands, allowing users to check the availability and progress of various software updates.</p> <p>Key Flags</p> <ul style="list-style-type: none"> • <code>-a, --all</code>: Shows the status of all available upgrades. • <code>-l, --latest</code>: Displays the status of the newest upgradable version. • <code>-r, --release <string></code>: Shows the status of a specified upgradable version (e.g., <code>-r V1.1</code>). • <code>--from <string></code>: Specifies the starting version for a range. • <code>--to <string></code>: Specifies the ending version for a range. <p><i>Note: The --from and --to flags can be used together to display the status for a range of versions</i></p>
list [flags]	<p>The <code>mx-sw-updater list</code> command is used to display information about software packages, including installed packages, upgradable packages in the local cache, and differences between versions.</p> <p>Key Flags</p> <ul style="list-style-type: none"> • <code>-l, --latest</code>: Lists all packages from the newest upgradable version in the local cache • <code>-s, --system</code>: Lists all packages currently installed on the system. • <code>-r, --release <string></code>: Lists all packages from a specified upgradable version (e.g., <code>-r V1.1</code>). • <code>-c, --compare <stringArray></code>: Show the changed packages between two specified versions (e.g., <code>-c V1.0 -c V1.1</code>). If the second version is not specified, it compares the specified version with the installed system packages. • <code>--detailed</code>: Shows both changed and unchanged packages. This flag is to be used with <code>-c, --compare</code>. • <code>--no-fixed</code>: Display output without fixed-length formatting.
Verify [flags]	<p>The <code>mx-sw-updater verify</code> command is used to verify the integrity and authenticity of an upgrade pack or refresh-upgrade pack by checking its digital signature. This ensures that the upgrade package has not been tampered with and is valid before performing any system upgrades.</p> <p>Key Flags</p> <ul style="list-style-type: none"> • <code>-p, --path <string></code>: Specifies the path to the upgrade pack or the refresh upgrade pack. • <code>-s, --signature <string></code>: Specifies the path to the signature file for verification. If not specified, the command will try to find the <code>.sha512.bin.signed</code> file in the same directory as the upgrade pack.

Offline Upgrade

An example of using `mx-sw-updater` to upgrade a UC-4434A-I-T computer from OS image v1.0/1.1 to v1.3 (MIL 3.4.1):

1. Download the v1.3 firmware package (ZIP format) for UC-4400A from the [UC-4400A Product Site](#)
2. Extract the ZIP file and locate the upgrade pack in the **Offline Upgrade Pack** folder.
3. Transfer both the upgrade pack and its digital signature file to the target device.
 - `moxa-UC-4400A_MIL3_V1.1-upgrade-pack`
 - `moxa-UC-4400A_MIL3_V1.1-upgrade-pack.sha512.bin.signed`

```
root@moxa-imoxa0920070:/home/moxa# ls -1
moxa-UC-4400A_MIL3_V1.3-upgrade-pack
moxa-UC-4400A_MIL3_V1.3-upgrade-pack.sha512.bin.signed
```

If you intend to perform a full system upgrade that wipes all user data and restores the system to its factory default settings, use the **Refresh Upgrade Pack** instead:

- `moxa-UC-4400A_MIL3_V1.3-refresh-upgrade-pack`
- `moxa-UC-4400A_MIL3_V1.3-refresh-upgrade-pack.sha512.bin.signed`

4. Copy and configure the upgrade pack and its metadata to the UC-4434A-I-T's local cache using the `mx-sw-updater configure -p moxa-UC-4400A_MIL3_V1.3-upgrade-pack` command.

```
root@moxa-imoxa0920070:/home/moxa# sudo mx-sw-updater configure -p moxa-UC-4400A_MIL3_V1.3-upgrade-pack
INFO[2024-10-13T04:24:44Z] configure successfully
```


NOTE

Replace step 1 and 2 with the `mx-sw-updater update` command if you intend to perform the upgrade remotely via the Moxa APT repository.

You can use the `mx-sw-updater list --compare V1.3` command to check the packages that will be upgraded when you apply the v1.3 upgrade pack.

```
root@moxa-imoxa0920070:/home/moxa# mx-sw-updater list --compare V1.3
INFO[2024-10-13T11:08:01Z] compare two packages: system and 1.3
      Name          Arch    Version      NewVersion      Status
-----
emwicon-wmx7205-d...  arm64  5.10.194-cip39-rt...  5.10.214-cip46-rt...  upgraded
libmcm0             arm64  1.4.26-1+deb11    1.5.14-1+deb11    upgraded
libmm-glib0          arm64  1.20.4+moxa1-1+deb11  1.20.4+moxa2-1+deb11  upgraded
linux-headers-5.1... arm64  5.10.194-cip39-rt...  5.10.214-cip46-rt...  upgraded
linux-image-5.10.... arm64  5.10.194-cip39-rt...  5.10.214-cip46-rt...  upgraded
linux-kbuild-5.10... arm64  5.10.194-cip39-rt...  5.10.214-cip46-rt...  upgraded
modemmanager         arm64  1.20.4+moxa1-1+deb11  1.20.4+moxa2-1+deb11  upgraded
moxa-bootloader-m...  all    2.3.0-1+deb11    2.5.0-1+deb11    upgraded
moxa-computer-int... arm64  1.34.2-1+deb11    1.37.0-1+deb11    upgraded
moxa-connection-m... arm64  1.4.26-1+deb11    1.5.14-1+deb11    upgraded
moxa-image-archiv... all    1.5.0+deb11      1.7.0-1+deb11    upgraded
moxa-mil-base-sys... all    3.2.0-2-1+deb11  3.3.0-1+deb11u2  upgraded
moxa-mxview-one-m... all    1.5.0-1+deb11    1.6.1-1+deb11    upgraded
moxa-system-manager  all    2.22.3-1+deb11    2.23.1-1+deb11    upgraded
moxa-uc-4400a-bas... arm64  3.2.0+deb11u4    3.3.0+deb11u1  upgraded
```

5. Upgrade the system to v1.3.
Enable auto-recovery and run the `mx-sw-updater upgrade --local --system-failback` command.

```
root@moxa-imoxa0920070:/home/moxa# sudo mx-sw-updater upgrade --local --system-failback
INFO[2024-10-13T11:32:22Z] current version: V1.0, target version: 1.3

Would you like to continue? (y/N) y
Synchronize boot files...
      0  0%   0.00kB/s  0:00:00 (xfr#0, to-chk=0/2)
      0  0%   0.00kB/s  0:00:00 (xfr#0, to-chk=0/2)
Start creating replica...
  150,208,843  99%  97.63MB/s  0:00:01 (xfr#133, to-chk=0/269)
Type: replica
Create Time: 2024.10.13-11:32:35
Size: 145MB
The system fallback has been enabled and the replica has been created
successfully.
```

6. Reboot the computer after the upgrade is complete.
7. Verify the system has been upgraded to v1.3 by using the `mx-ver` command.

```
root@moxa-imoxa0920070:/home/moxa# mx-ver
UC-4434A-I-T MIL3 version 1.3 Build 25101605
```

Online Upgrade

An example for using the `mx-sw-updater` command to perform an online OTA upgrade to the latest available MIL version.

1. Sync the latest metadata from APT repo to local

```
root@moxa-imoxa1000030:/# sudo mx-sw-updater update
```

2. Perform OTA upgrade to the latest available MIL4 version

```
root@moxa-imoxa1000030:/# sudo mx-sw-updater upgrade
```

Online Update via Secure APT

Moxa Arm-based computers support SecureApt, which uses a GPG public key system to ensure the integrity and authenticity of patches are validated before download, and x.509 certification authentication for secure transmission via HTTPS. The private key pair of the GPG key for the Moxa APT repository is stored in an on-premises Sign Server, accessible only by authorized Moxa personnel.

NOTE

Click the following link for more information on how SecureApt works: <https://wiki.debian.org/SecureApt>

Querying the System Image Version

Use the `mx-ver` command to check the system image version on your Arm-based computers.

```
moxa@moxa-tbzkb1090923:# mx-ver
UC-8220-T-LX-US-S MIL3 version 1.0 Build 22052300
```

Fallback Update

We strongly recommend enabling the fallback function before performing an update. Refer to fallback feature in the Moxa System Manager (MSM) for details.

Managing the APT Repository

The APT Repository is the network server from which APT downloads packages that are installed on your Moxa Arm-based computer. By default, Moxa Arm-based computers include the following repositories that contain stable and well-tested packages best suited for ensuring the stability of your project.

Source list	Repository URL	Description
/etc/apt/sources.list.d/ debian.sources	https://deb.debian.org/debian trixie	Debian official repository containing the latest stable Debian 13 release (released about every 2 months)
	https://deb.debian.org/debian trixie-updates	Debian official repository containing bug fixes that will be included in the upcoming Debian 13 release
	https://deb.debian.org/debian -security/trixie- security/updates	Debian official repository containing security hotfixes that will be included in the upcoming Debian 13 release
/etc/apt/sources.list.d/ moxa.sources	https://debian.moxa.com/mil4 trixie	Moxa repository containing Moxa's proprietary library, tools, utilities, and kernel. Moxa will maintain security and bug fixes even after Debian 13 has reached its end of life (EOL).

To add a new repository, you must add the repository URL and official GPG key to the source list and keyring in your Moxa Arm-based computer.

Updating Your System

Preparing a Staging Environment

Since Moxa Arm-based computers are open platforms, you are free to install any software that you would like to use. However, we highly recommend that you test all new software on a staging platform before installing them on your production gateways.

Synchronizing the Repository Information

The first and most important step is to synchronize the package index files in your Arm-based computer with the source repositories specified in the file `/etc/apt/sources.list.d`. When you perform the synchronization, information related to the packages, including versions and dependencies, will also be downloaded from the repositories.

To perform the synchronization, make sure that your network environment can connect to the APT repositories, and then run the `apt update` command with root permission to synchronize the package index.

```
moxa@moxa-tbbbb1182827:~# sudo apt update
```

Updating the Entire System

Use the `apt full-upgrade` command to upgrade all packages used by your Moxa Arm-based computer to latest versions.

```
moxa@moxa-tbbbb1182827:~# sudo apt full-upgrade
```

Updating the Bootloader

When a updated Bootloader firmware is available, Moxa will publish a notification on the [Moxa Arm-based computer product page](#) and upload the new firmware to the Moxa APT repository. You can download the firmware (.bin format) via SecureAPT so that the authenticity and integrity of the firmware is verified.

NOTE

Click the following link for more information on how SecureAPT
<https://wiki.debian.org/SecureApt>

Querying the Current Bootloader Version

Use the `mx-boot-mgmt upgrade -i` command to check the current bootloader version of your Arm-based computer.

```
root@moxa-imoxa1000030:/# mx-boot-mgmt upgrade -i

Current BIOS/Uboot information:
compatible model: UC-3400A
BIOS/Uboot version: 2.0.0S05
sha256sum: c8b0b41467236470e2cc5d84a6082699acc602d54f59a3ab0balef49f79b316a
md5sum: 71b7af40b615e174371d458904962499 urrent bootloader information:
```

Downloading the latest Bootloader

Use the `sudo apt update && sudo apt install -y moxa-[computer series name]-uboot` to download the bootloader .bin file

After installation, the .bin file will be located at:
`/lib/firmware/moxa/bootloader/[computer-series-name]`

You can use the command `mx-boot-mgmt upgrade available` to display detailed information about the downloaded bootloader .bin file, including the compatible model, version, file path, and hash.

Moxa Computer Series	How to Download Bootloader
UC-1222A Series	<code>apt update && apt install -y moxa-uc-1200a-uc-2200a-uboot</code>
UC-2222A Series	<code>apt update && apt install -y moxa-uc-1200a-uc-2200a-uboot</code>
UC-3400A Series	<code>apt update && apt install -y moxa-uc-3400a-uboot</code>
UC-4400A Series	<code>apt update && apt install -y moxa-uc-4400a-uboot</code>
UC-8600A Series	<code>apt update && apt install -y moxa-uc-8600a-uboot</code>
V1200 Series	<code>apt update && apt install -y moxa-v1200-uboot</code>

Example: Downloading the bootloader .bin file for your UC-3400A Series computer

```
root@moxa-tb11827:/# sudo apt update && sudo apt install -y moxa-uc-3400a-uboot
root@moxa-tb11827:/# cd /lib/firmware/moxa/bootloader/uc-3400a
root@moxa-tb11827:/lib/firmware/moxa/bootloader/uc-3400a# ls
u-boot.bin
```

Updating Bootloader

Use the `mx-boot-mgmt upgrade apply` command to update the Bootloader

```
root@moxa-tb11827:/# mx-boot-mgmt upgrade apply
The version of BIOS/Uboot being updated: 2.0.0S05
The version of current BIOS/Uboot: 2.0.0S01
Do you want to continue? (y/N)y

BIOS/Uboot update failure could result in device malfunction.
It is recommended to enable system failback before the update.
Would you still like to continue without failback enabled? (y/N)y

Start to upgrade BIOS/Uboot...
Upgrade /dev/mtd1 BIOS/Uboot to version 2.0.0S05 successfully
```

Enable the Failback Function Before Update

We highly recommend enabling the failback function before performing a bootloader update because a power outage may cause the device to be unable to boot. For details, see [failback](#) feature in the Moxa System Manager (MSM) tool.

7. Backup, Decommission, and Recovery

In this chapter, we will introduce how to use Moxa System Management (MSM) utility to perform snapshot, backup, decommission, and recovery of your system. MSM provides an automatic fallback mechanism to ensure that the device can recover to the last known working and secure state when the device fails after a critical event such as a system update.

Function	Description
Snapshot	<ul style="list-style-type: none">The snapshot has a smaller footprint as it saves just the differences (partition 3 in Figure 7.1) compared to the out-of-factory rootfs (partition 2 in Figure 7.1).The snapshot is saved in the Moxa Arm-based computer and cannot be exported. Hence, a snapshot can only be used to restore the computer that the snapshot was taken from.
Backup	<ul style="list-style-type: none">The backup has a larger footprint as it saves the entire system including the out-of-factory rootfs.The backup can be exported to an external storage.The backup can be used to restore the Moxa Arm-based computer that the backup is taken from or another computer of the same model.
Automatic Fallback Recovery	<ul style="list-style-type: none">When fallback recovery is enabled, a replica of the system including the snapshot and bootloader is created.If a boot failure event occurs after fallback recovery is enabled, the system will automatically use the replica to recover the systemFallback recovery should be enabled before performing any critical actions that may potentially result in a device failure (e.g., power loss during a bootloader update could brick a computer).

Below diagram illustrate an overview of MIL4 system layout:

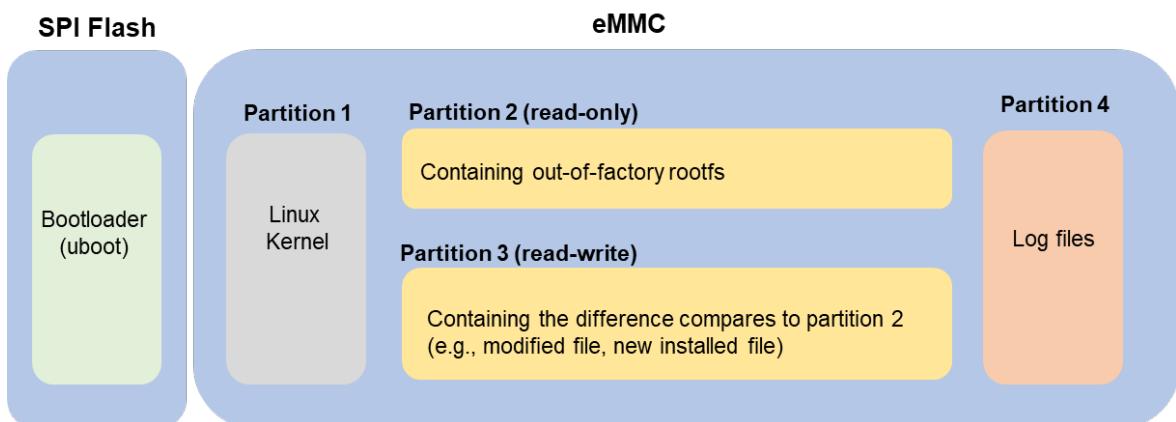


Figure 7.1 - Layout Overview of Arm-based Computer with MIL4

Creating a System Snapshot

A snapshot preserves the state and data of the Moxa Arm-based computer as a restoration point at a specific point in time so that you can restore it to that point if something goes wrong. Snapshots only save the Linux kernel and new and modified files to the out-of-factory rootfs (partition 2). Therefore, the size of a snapshot is much smaller than a backup.

Use the `# sudo mx-system-mgmt snapshot <sub-command> <options> <flag>` to create restore a system. You must use `sudo` or run the command with root permission.

Sub-commands	Description
create	Creates a snapshot of system <ul style="list-style-type: none">• A snapshot includes kernel (partition 1) and rootfs (partition 3)• Only one snapshot is saved. A new snapshot will overwrite the previous snapshot• Snapshot is stored in rootfs (partition 3)
restore	Restores the system with the snapshot. System fallback will be disabled after a system is restored from the snapshot.
delete	Deletes the existing snapshot
info	Displays the creation time and size of the existing snapshot

Options	Description
--cold	Creates a snapshot after restarting the system in a minimal environment, such as initrd. This ensures data consistency but requires system downtime during the snapshot creation process.
--hot	<ul style="list-style-type: none">• This is the default mode if neither the <code>--cold</code> nor <code>--hot</code> options are specified.• Using <code>--hot</code> creates a snapshot of the system while it remains fully operational, without requiring system downtime. <p>Caution: While the hot snapshot method minimizes disruption, there is a potential risk of data inconsistencies due to changes that may occur during the snapshot process.</p>
--size	Estimates the additional disk space required to create the snapshot.

Flag	Description
-y or --yes	Automatically consent to the prompts during create, restore, and delete processes

WARNING

Before initiating the backup or snapshot process with `--hot` option, it is crucial to ensure that all active services involving customer-developed software, are temporarily disabled. Services that are running during the backup may lock certain files, preventing them from being copied and resulting in an incomplete backup. This can compromise the integrity of your backup and the ability to fully restore your system later.

Creating a System Backup

Similar to a snapshot, a backup saves Linux kernel and the rootfs on your Moxa Arm-based Computer. Therefore, a backup can be exported and used to restore a Moxa Arm-based computer of the same model with MIL4. For example, if you create a backup on UC-3400A Secure model with MIL4, you can use the backup to restore another UC-3400A Secure model.

Use `# sudo mx-system-mgmt backup <sub-command> <options> <flag>` command to create, delete, and restore a backup. You must use `sudo` or run the command with the root permission.

Sub-commands	Description
create	<p>Creates a backup of the system</p> <ul style="list-style-type: none">The backup includes kernel (partition 1), rootfs (partition 2), and rootfs (partition 3)By default, the backup is created in the <code>/boot_device/p3/backup/</code> directory with the name <code>backup.tar</code>, together with an info file that contains the backup information and cryptographic hash of the backup.The backup includes system snapshot. If you would like to reduce the size of backup, you can delete the snapshot in the system before performing the backup if the snapshot is not needed.
delete	Deletes the backup from the default directory
restore	<p>Restores the system using the backup from default directory.</p> <ul style="list-style-type: none">System fallback will be disabled after restoration.Existing snapshot on system will be deleted after restoring the system from a backup.The cryptographic hash in the info file will be used to validate the integrity of the backup file before the restore process begins.A system reboot is required after restoration.
info	Displays the creation time and size of the backup in the default directory

Options	Description
--cold	<p>Creates a backup after restarting the system in a minimal environment, such as initrd. This ensures data consistency but requires system downtime during the backup creation process.</p> <p><i>Note: This feature is available in MIL v3.2 and later versions.</i></p>
--hot	<ul style="list-style-type: none">This is the default mode if neither the <code>--cold</code> nor <code>--hot</code> options are specified.Using <code>--hot</code> creates a snapshot of the system while it remains fully operational, without requiring system downtime. <p>Caution: While the hot backup method minimizes disruption, there is a potential risk of data inconsistencies due to changes that may occur during the backup process. Ensure that all active services involving customer-developed software, are temporarily disabled.</p>
--compress	<p>Create a backup with compression. Please note that this might result in a significantly longer backup time.</p> <p><i>Note: This feature is available in MIL v3.3 and later versions.</i></p>
-D or --directory	Specifies the directory (e.g., <code>/media/USB_p1</code>) where the backup will be created
--size	Estimates the additional disk space required to create the backup.

Flag	Description
<code>-y</code> or <code>--yes</code>	Automatically consent to the prompt during create, delete and restore

ATTENTION

When restoring a backup from one Moxa computer to multiple other Moxa computers, the SSH host key will be identical across all devices. If you need each computer to have a unique SSH host key, ensure you regenerate the host key after restoring the backup.

The following example demonstrates how to perform a system backup using the hot method to a USB storage drive mounted at **/media/USB_p1**:

```
moxa@moxa-tbzkb1090923:# sudo mx-system-mgmt backup create --hot -D /media/USB_p1
Set /media/USB_p1 as backup directory.
Check the backup information...
There is no backup information
Start evaluating space, please wait...
Estimation of Required Space: 628MB
Available Space: 32756MB
Would you like to continue? (y/N)y
Synchronize boot files...
          0  0%  0.00kB/s  0:00:00 (xfr#0, to-chk=0/2)
Start creating backup file...
 628MiB 0:00:57 [11.0MiB/s] [ <=> ]
Type: backup
Create Time: 2021.11.06-17:32:29
Size: 628MB
The backup has been created successfully under: /media/USB_p1
```

The following example shows how to restore a backup from the USB storage drive with the mounting point **/media/USB_p1**:

```
moxa@moxa-tbzkb1090923:# sudo mx-system-mgmt backup restore -D /media/USB_p1
Set /media/USB_p1 as backup directory.
Check the backup information...
Type: backup
Create Time: 2021.11.06-17:44:43
Size: 628MB
Start verifying backup file, please wait...
Verified OK!
Start evaluating space, please wait...
Estimation of Required Space: 628MB
Available Space: 5125MB
Would you like to continue? (y/N)y
Check the snapshot information...
Type: snapshot
Create Time: 2021.11.06-15:42:47
Size: 235MB
This will delete the existing snapshot.
Do you want to continue? (y/N)y
Check the snapshot information...
Type: snapshot
Create Time: 2021.11.06-15:42:47
Size: 235MB
The snapshot has been deleted successfully.
To restore the backup file will overwrite current system and factory default system.
Do you want to continue? (y/N)y
Start using the backup file to restore the system...
 628MiB 0:01:00 [10.4MiB/s] [=====>]
100%
Synchronize boot files...
          0  0%  0.00kB/s  0:00:00 (xfr#0, to-chk=0/2)
System has been restored successfully. Reboot is required to take effect.
moxa@moxa-tbzkb1090923:# sudo reboot
```


WARNING

Before initiating the backup or snapshot process with **--hot** option, it is crucial to ensure that all active services involving customer-developed software, are temporarily disabled. Services that are running during the backup may lock certain files, preventing them from being copied and resulting in an incomplete backup. This can compromise the integrity of your backup and the ability to fully restore your system later.

Excluding Files and Directories from System Backup

In some scenarios, users may want to exclude specific files or directories from the system backup to reduce backup size or avoid backing up non-essential data (e.g., logs, temporary files, or application-generated data).

MIL provides a configurable exclusion mechanism for system backups.

Backup Exclusion Configuration

Backup exclusion rules are defined using configuration files placed in the following directory:

```
/etc/moxa-system-manager/backup-exclude.d/
```

- The directory and an example configuration file are created by default.
- All files with the .conf extension in this directory will be applied when creating a system backup.
- Multiple exclusion configuration files are supported.

Exclusion File Format

Each exclusion configuration file contains a list of file or directory paths to be excluded from the backup.

One entry per line is supported.

Example configuration file:

```
/etc/moxa-system-manager/backup-exclude.d/example.conf
```

Example content:

```
# Example of Moxa System Manager Configurable Exclusion File

# Exclude a specific file
/home/moxa/tmp.log

# Exclude a specific directory
/etc/mydir

# Exclude files using wildcards
/etc/*.bak
```

The following exclusion patterns are supported:

- **Specific files** (absolute path)
- **Specific directories** (absolute path)
- **Wildcard patterns** (e.g., *)

Using Multiple Exclusion Files

The backup exclusion mechanism supports multiple .conf files in the exclusion directory.

All exclusion rules across these files will be applied during backup creation.

Example:

```
/etc/moxa-system-manager/backup-exclude.d/example.conf
/etc/moxa-system-manager/backup-exclude.d/custom.conf
```

Notes and Considerations

- Exclusion rules apply **only during backup creation**.
- Excluded files and directories will **not be included** in the generated backup image.
- Kernel and root filesystem structure required for system restoration are not affected by exclusion rules.
- Ensure that critical system files required for system boot and operation are **not excluded**.

Setting the System to the Default

Press and hold the **FN** button for 7 to 9 seconds to reset the computer to the factory default settings. When the reset button is held down, the LED will blink once every second. The LED will become steady when you hold the button continuously for 7 to 9 seconds. Release the button immediately when the LED become steady to load the factory default settings. For additional details on the LEDs, refer to the quick installation guide or the user's manual for your Arm-based computer

ATTENTION

Reset-to-default will erase all data stored on the boot-up storage

Back up your files before resetting the system to factory defaults. All the data stored in the Arm-based computer's boot-up storage will be destroyed after resetting to factory defaults, except for snapshots and backups located under /boot_device/p3.

You can also use the **sudo mx-system-mgmt default restore** command to restore the computer to factory default settings. You must use sudo or run the command with the root permission.

```
moxa@moxa-tbzkb1090923:/# sudo mx-system-mgmt default restore
```

If you would like to configure the **FN** button for a different action (e.g., restore to a snapshot), refer to [Customize the Button Action](#) section.

Decommissioning the System

Compared with the set-to-default function, decommissioning will further erase all data stored in the log partition and /boot_device/p3 to help erase security-sensitive information.

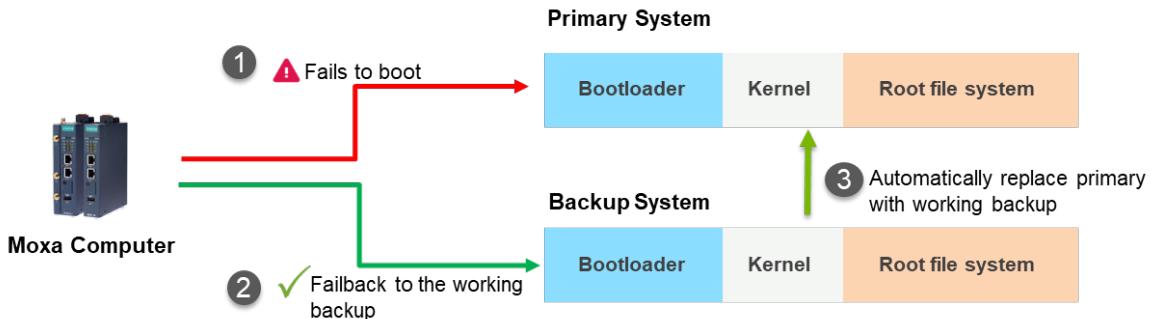
ATTENTION

Decommission will erase all the data including event and audit logs

Please back up your files before resetting the system to factory defaults. All user data including logs in your Arm-based computer will be destroyed after performing decommissioning. Bootloader configuration, including administrator password, will also be set to factory default.

You can also use the **sudo mx-system-mgmt default decommission** command to restore the computer to factory default. You must use sudo or run the command with the root permission.

```
moxa@moxa-tbzkb1090923:/# sudo mx-system-mgmt default decommission
```


The decommissioning process will do the following:

1. Overwrite the system partition 4 times with shred so that all user files will be deleted and cannot be recovered.
2. Overwrite the log partition 4 times with shred so that all log files will be deleted and cannot be recovered.
3. Trigger the bootloader decommissioning function, so all configurations and log messages in the bootloader are also deleted and cannot be recovered.

System Fallback Recovery

A system bootup failure may occur when critical files are lost or corrupted. A typical and common cause of bootup failures is power lost during system update. Moxa System Management (MSM) provides system fallback capability, which can automatically recover your system to the last known working state if boot up failure is detected after critical change(s) are made to the primary system. The boot failure criteria are customizable.

Before applying critical update or changes to the device, it is recommended to enable system fallback first.

Use `# sudo mx-system-mgmt system-fallback <sub-command> <flag>` to enable or disable system fallback. You must use sudo or run the command with the root permission.

Sub-commands	Description
enable	<p>Enables system fallback and create a replica of the system</p> <ul style="list-style-type: none">• The replica includes Bootloader, kernel (partition 1) and rootfs (partition 3)• The replica is stored in rootfs (partition 3)• When the Moxa Arm-based computer fails to boot up, the device will automatically reboot and replace the broken system with the working replica.• The replica includes a system snapshot. If you would like to reduce the size of the replica, you can delete the snapshot if you no longer need it.
disable	Disables the system fallback and delete the existing system replica
Info	Displays the create time and size of replica
State	Displays the status of system fallback (enabled/disabled)

Options	Description
--cold	<p>Creates a replica after restarting the system in a minimal environment, such as initrd. This ensures data consistency but requires system downtime during the replica creation process.</p>
--hot	<ul style="list-style-type: none">• This is the default mode if neither the --cold nor --hot options are specified.• Using --hot creates a replica of the system while it remains fully operational, without requiring system downtime. <p>Caution: While the hot replica method minimizes disruption, there is a potential risk of data inconsistencies due to changes that may occur during the replica creation process.</p>
--size	Estimates the additional disk space required to create the replica.
-V or --value	<p>Displays only the binary value of the system fallback state:</p> <ul style="list-style-type: none">• Enabled : 1• Disabled: 0 <p>Example: <code>mx-system-mgmt system-fallback state -V</code></p>

Flag	Description
-y or --yes	Automatically consent to the prompts during the enable and disable processes

WARNING

Before initiating the replica creation process with **--hot** option, it is crucial to ensure that all active services involving customer-developed software, are temporarily disabled. Services that are running during the creation process may lock certain files, preventing them from being copied and resulting in an incomplete replica. This can compromise the integrity of your replica and the ability to fully recover your system later.

Below is an example of how to enable system failback using the hotesson s method and display the information of the system replica:

```
moxa@moxa-tbzkb1090923:/# sudo mx-system-mgmt system-failback enable
Start evaluating space, please wait...
Estimation of Required Space: 233MB
Available Space: 5333MB
Would you like to continue? (y/N) y
Start processing...
Synchronize boot files...
      0  0%    0.00kB/s    0:00:00 (xfr#0, to-chk=0/2)
      0  0%    0.00kB/s    0:00:00 (xfr#0, to-chk=0/2)
Start creating replica...
  244,670,045  99%  11.94MB/s    0:00:19 (xfr#170, to-chk=0/294)
Type: replica
Create Time: 2021.11.06-14:35:14
Size: 235MB
The system failback has been enabled and the replica has been created
successfully.
moxa@moxa-tbzkb1090923:/# sudo mx-system-mgmt system-failback info
Check the replica information...
Type: replica
Create Time: 2021.11.06-14:35:14
Size: 235MB
```

Customize the Boot Up Failure Criteria

If you would like to customize the boot failure criteria, you can edit below script to add criteria you like Moxa System Manager to check.

```
/etc/moxa-system-manager/check-hooks.d/99-example.sh
```

In below example in **99-example.sh**, Moxa System Manager will consider the boot up is successful if "moxa-connection-manager.service" start successfully by returning a zero value. If the program returns a non-zero value, the moxa-system-manager service will not mark this startup as successful, and it will enter the system-failback process to restore the system.

```
#systemctl is-active moxa-connection-manager.service && exit 0 || exit 1
```

8. Security Capability

In this chapter, we will introduce Moxa Arm-based computers key security functions and a security hardening guide to deploy and operate Moxa computer in a secure manner

Communication Integrity and Authentication

Below is a list of network communication services and protocols available in the Moxa Arm-based computer and their data integrity and authentication protection mechanisms.

Service	Protocol	Data Integrity	Data Authentication
SSH server and client	SSH	HMAC algorithm is used to guarantee data integrity	Uses key signature algorithms such as ED25519, ECDSA, or RSA to verify authenticity.
SFTP server	SSH		
SCP server	SSH		
APT client	HTTPS	SecureAPT uses checksum to guarantee data integrity	SecureAPT uses GPG public key system to validate data authenticity
NTP client (NTS support)	TLS/SSL, NTP	NTS guarantees data integrity via NTS Authenticator and Encrypted EF	NTS provides TLS layer to guarantee authenticity
Device Discovery	mDNS	The mDNS protocol doesn't implement data integrity and authentication protection.	

ATTENTION

For post-installed communication services and protocols, you must ensure data integrity and authentication are implemented. If integrity and authentication are not available, you must use additional compensating countermeasures in system to compensate the risk. For example, physical cable protection for serial Modbus RTU.

User Account Permissions and Privileges

Switching to the Root Privilege

In Moxa Arm-based computers, the root account is disabled in favor of better security. The default user account **moxa** belongs to the sudo group. Sudo is a program designed to let system administrators allow permitted users to execute some commands as the root user or another user. The basic philosophy is to give as few privileges as possible but still allow people to get their work done. Using sudo is better (safer) than opening a session as root for a number of reasons, including:

- Nobody needs to know the root password (sudo prompts for the current user's password). Extra privileges can be granted to individual users temporarily, and then taken away without the need for a password change.
- It is easy to run only the commands that require special privileges via sudo; the rest of the time, you work as an unprivileged user, which reduces the damage caused by mistakes.
- Some system-level commands are not available to the user moxa directly, as shown in the sample output below:

```
moxa@Moxa-tbzkb1090923:~$ sudo ifconfig
eth0      Link encap:Ethernet  HWaddr 00:90:e8:00:00:07
          inet  addr:192.168.3.127  Bcast:192.168.3.255  Mask:255.255.255.0
                  UP BROADCAST ALLMULTI MULTICAST  MTU:1500  Metric:1
                  RX packets:0  errors:0  dropped:0  overruns:0  frame:0
```

```

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

eth1      Link encap:Ethernet HWaddr 00:90:e8:00:00:08
          inet addr:192.168.4.127 Bcast:192.168.4.255 Mask:255.255.255.0
          UP BROADCAST ALLMULTI MULTICAST MTU:1500 Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo        Link encap:Local Loopback
          inet addr:127.0.0.1 Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
          UP LOOPBACK RUNNING MTU:16436 Metric:1
          RX packets:32 errors:0 dropped:0 overruns:0 frame:0
          TX packets:32 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:2592 (2.5 KiB) TX bytes:2592 (2.5 KiB)

```

You can switch to the root account using the `sudo -i` (or `sudo su`) command. For security reasons, do not operate **all** commands from the root account.

NOTE

Click the following link for more information on the `sudo` command.
<https://wiki.debian.org/sudo>

ATTENTION

You might get the permission denied message when using pipe or redirect behavior with a non-root account.

You must use '`sudo su -c`' to run the command instead of using `>`, `<`, `>>`, `<<`, etc.

Note: The single quotes enclosing the full command are required.

Controlling Permissions and Privileges

Moxa Industrial Linux uses Discretionary Access Control (DAC) based on Access Control Lists (ACLs) to manage permissions and privileges, which an object has an owner that controls the permissions to access the object. Subjects can transfer their access to other subjects. In other words, the owner of the resource has full access and can determine the access type (rwx: read, write, execute) of other users.

You can use `chmod` command to configure who (user, group, other) can do what (read, write, execute) to a file or directory. The access permission is extended by Access Control Lists (ACLs) authorization. ACL provides a more flexible mechanism that allows multiple users and groups to own an object. You can check and configure access control lists of a specific file or directory using `getfacl` and `setfacl` commands.

NOTE

Click the following link for more information on usages of `chmod` and Access Control Lists (ACLs)
<https://wiki.debian.org/Permissions>

Moxa Arm-based computers only provide one account in sudo group by default because it is intended for the system integrator to customize and build their applications on top.

The system integrator shall be responsible for setting the appropriate permissions to roles and user accounts to enforce the concept of least privilege.

Linux Login Policy

Invalid Login Attempts

Moxa Industrial Linux provides the capability to configure allowed invalid login attempts to mitigate against Denial-of-Service (DoS) and Brute-force attack.

Model Type	Default Rule
Secure model	[5] consecutive invalid login within [60] seconds will deny access for [300] seconds.
Standard model	[5] consecutive invalid login within [60] seconds will deny access for [300] seconds.

Following is the configuration file and variable to configure the setting:

Configuration Option	Configuration file	Variable to Set
Consecutive invalid login	/etc/security/faillock.conf	deny
Within how many seconds	/etc/security/faillock.conf	fail_interval
Deny access for how long (in seconds)	/etc/security/faillock.conf	unlock_time

More configurable options can be found in following reference:

- [login.defs\(5\) — login.defs — Debian trixie — Debian Manpages](#)
- [faillock.conf\(5\) — libpam-runtime — Debian trixie — Debian Manpages](#)

Session Termination After Inactivity

This setting automatically terminates the login sessions after a standard period of inactivity. Below is the default configuration set in Moxa Arm-based computer.

Security Model	Default Value
Secure model	<ul style="list-style-type: none">• Automatically logout standard user after 900 second of inactivity• Automatically terminate root privilege of sudo user after 900 second of inactivity
Standard model	Not applicable; requires manual configuration. For more information about session termination, visit: https://manpages.debian.org/trixie/bash/bash.1.en.html

Follow below instructions to configure the inactivity time:

Login Method	Configuration
Serial Console and SSH (Secure Shell)	<ul style="list-style-type: none">• Set the value (in seconds) of variable TMOUT in /etc/profile.d/99-moxa-profile.conf• Apply the same value to variable ClientAliveInterval in /etc/ssh/sshd_config.d/00-moxa-sshd.conf• To apply the rule to sudo user, make sure variable env_keep+="TMOUT" exist in /etc/sudoers.d/00-moxa-sudoers-conf

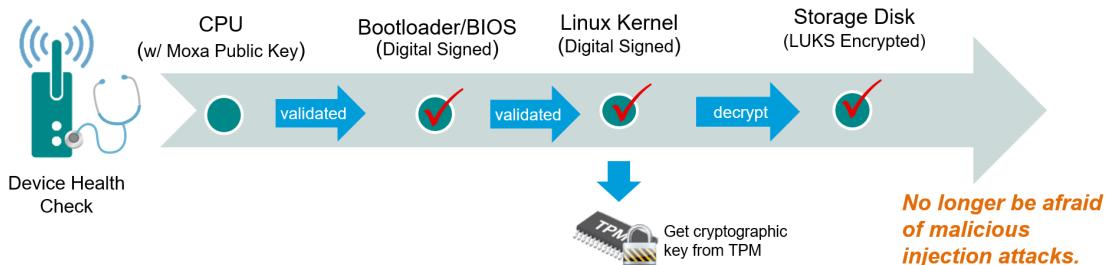
NOTE

The SSH session termination takes effect upon the next login and does not apply to currently active sessions.

Login Banner Message

You can set a message banner message to displaying welcome or informational messages or warming message to un-authorized users. Follow below instructions to add a banner Moxa Industrial Linux 4.0 UM for Arm-based Computers Moxa Industrial Linux 4.0 UM for Arm-based Computers.

Login Method	Banner Content	Additional Configuration Required
Serial Console	/etc/issue	n/a
SSH (Secure Shell)	/etc/issue.net	Add variable Banner /etc/issue.net is added in /etc/ssh/sshd_config.d/00-moxa-sshd.conf


Bootloader Login Policy

For bootloader login policy management, refers to the [bootloader configuration](#) section.

Secure Boot and Disk Encryption

Secure boot and disk encryption are available in Secure model, designed to make platform integration more secure. Moxa's secure boot process begins from CPU as hardware root-of-trust to ensure integrity and authenticity of bootloaders and Linux kernels are validated with Moxa digital signature before execution, preventing malicious or un-authenticated bootloader and kernels to run on Moxa Arm-based computer.

Next, only after bootloader and kernel have been validated, the LUKS (Linux Unified Key Setup) encrypted root file system (rtfs) will be decrypted by a key provisioned in TPM during factory production. Disk encryption prevents confidential data being read without authorization when the device is stolen or lost.

Public key infrastructure (PKI)

Moxa secure boot use X.509 public key infrastructure (PKI) to validate authenticity and integrity of bootloader and Linux kernel.

How are private keys protected?

Private keys used to digital sign Moxa software are stored in an on-premises tamper and intrusion-resistant hardware security module (HSM), where strict access authorization and 24-hour video surveillance are applied.

Key lifecycle and revocation

In an unlikely scenario where the private key stored in HSM is compromised, Moxa will announce the news on [Moxa Security Advisory](#), including instructions to revoke the compromised public key burned in the CPU via a utility downloadable from Moxa APT repository. Then update the bootloader and system image signed by a new private key.

ATTENTION

DO NOT arbitrarily replace the kernel or bootloader on Secure models, or the computer will not be able to boot up.

Trusted Platform Module (TPM 2.0)

The Moxa Arm-based computer includes a TPM 2.0 hardware module. TPM provides a hardware-based approach to manage user authentication, network access, data protection and more that takes security to higher level than software-based security. It is strongly recommended to manage keys with TPM and also store digital credentials such as passwords

The TPM can be managed via the `tpm2-tools` pre-installed in Moxa Industrial Linux (<https://github.com/tpm2-software/tpm2-tools>).

TPM software stack & tool is maintained by tpm2-software community <https://tpm2-software.github.io/>

A good reference of TPM 2.0 introduction https://link.springer.com/chapter/10.1007/978-1-4302-6584-9_3

Host Intrusion Detection

Secure model of Moxa Arm-based computer comes with **AIDE** (Advanced Intrusion Detection Environment) preconfigured. AIDE is a lightweight but powerful host intrusion detection utility for checking the integrity of files.

The out-of-factory Moxa Arm-based computer comes with a database created by AIDE at the first time bootup containing all security configurations set by Moxa. You can compare the system's status against this database to find out if there is any integrity breach. You can also update the database after making changes to the configuration or adding additional software.

Default Monitored Files

Below are the security configuration files and directories included in the default database created by Moxa.

- The database is `aide-moxa.db` and put under `/var/lib/aide/aide-moxa.db`.
- The configuration file of AIDE is `/etc/aide/aide-moxa.conf`; you can add additional files and directories to the database.

Configuration Type	Path
File	/etc/adduser.conf
	/etc/firewalld/firewalld.conf
	/etc/login.defs
	/etc/logrotate.conf
	/etc/profile
	/etc/rsyslog.conf
	/etc/sudoers
	/etc/security/pwquality.conf
	/etc/sysctl.conf
	/etc/moxa/moxa-guardian/
Directory	/etc/aide/
	/etc/audit/
	/etc/firewalld/zones/
	/etc/firewalld/firewalld.conf
	/etc/logrotate.d/
	/etc/moxa/MoxaComputerInterfaceManager/
	/etc/moxa/MoxaConnectionManager/
	/etc/moxa/moxa-guardian/
	/etc/pam.d
	/etc/security/
	/etc/profile.d/
	/etc/rsyslog.d/
	/etc/ssh/
	/etc/sudoers.d
	/var/lib/moxa-guardian/
	/etc/chrony/
	/etc/fail2ban/
	/etc/fstab
	/etc/security/pwquality.conf.d/
	/etc/sysctl.d/

To run a comparison between current system against the Moxa AIDE database, run `aide --check -c /etc/aide/aide-moxa.conf`. You can also check the result from `/var/log/aide/aide.log`.

```
moxa@moxa-tbbbb1182827:/# sudo aide --check -c /etc/aide/aide-moxa.conf
Start timestamp: 2022-06-12 13:47:38 +0000 (AIDE 0.17.3)
AIDE found NO differences between database and filesystem. Looks okay!!

Number of entries: 254
-----
The attributes of the (uncompressed) database(s):
-----
/var/lib/aide/aide-moxa.db
MD5       : A8wKxphrNVlWz31AVf3esA==
SHA256    : trGvVioXdZf/RISmj3v60mQsmcrqK4kV
           sUFm068cLOs=

End timestamp: 2022-06-12 13:47:39 +0000 (run time: 0m 1s)
```

To update the database after you have make configuration changes, run `aide --init -c /etc/aide/aide-moxa.conf`.

You should see following output which created a new AIDE database **aide-moxa.db.new** under `/var/lib/aide`.

```
moxa@moxa-tbbbb1182827:/# sudo aide --init -c /etc/aide/aide-moxa.conf
Start timestamp: 2022-06-12 14:39:30 +0000 (AIDE 0.17.3)
AIDE initialized database at /var/lib/aide/aide-moxa.db.new

Number of entries: 254
-----
The attributes of the (uncompressed) database(s):
-----
/var/lib/aide/aide-moxa.db.new
MD5       : Mb74vEG93jjVfJMGSZa+DA==
SHA256    : EN15QGVgYXuKEwE3FSXRfxl3vJg0TxU
           WsQnHN16E74=


End timestamp: 2022-06-12 14:39:30 +0000 (run time: 0m 0s)
```

For AIDE to use the new database, you need to rename it to `aide-moxa.db`.

```
moxa@moxa-tbbbb1182827:/# sudo mv /var/lib/aide/aide-moxa.db.new
/var/lib/aide/aide-moxa.db
```

At this point, you can run `aide --check -c /etc/aide/aide-moxa.conf` to compare current system against the updated AIDE database.

How to Perform Authenticity and Integrity Check on All Files

If you would like to ensure authenticity and integrity of all files in your Moxa Arm-based computer, you can create an openSSL signed database containing every single file under the filesystems, then validate the authenticity of the database before using AIDE to check the integrity of all files in the filesystem. Following below steps to create such AIDE database.

1. Create a database using `/etc/aide/aide-fs-moxa.conf`; this configuration file monitors every single file in the filesystem.

```
moxa@moxa-tbbbb1182827:~# sudo aide --init -c /etc/aide/aide-fs-moxa.conf
```

2. Rename the created database to `/var/lib/aide/aide-fs-moxa.db`.

3. Generate a 4096-bit RSA private key.

```
moxa@moxa-tbbbb1182827:~# sudo openssl genrsa -out aide-key.pem 4096
Generating RSA private key, 4096 bit long modulus (2 primes)
.
.
.
e is 65537 (0x010001)
Enter pass phrase for aide-key.pem:
```


ATTENTION

You MUST keep the private key and pass phrase in a secure location.

4. Generate a public key from the private key:

```
moxa@moxa-tbbbb1182827:~$ sudo openssl rsa -in aide-key.pem -pubout -out
aide-
key.pub
Enter pass phrase for aide-key.pem:
writing RSA key
moxa@moxa-tbbbb1182827:~$
```

5. Generate a digital signature of `aide-filesystem-moxa.db` by the private key.

```
moxa@moxa-tbbbb1182827:~$ sudo openssl dgst -sha256 -sign aide-key.pem -out
aide-filesystem-moxa.db.sha256 /var/lib/aide/aide-fs-moxa.db
Enter pass phrase for aide-key.pem:
```

6. Now, you can distribute the database, public key and signed signature to other location, such as a centralized remote system.

7. Verify if the database has been tampered or not.

```
moxa@moxa-tbbbb1182827:~$ sudo openssl dgst -sha256 -verify aide-key.pub -
signature aide-filesystem-moxa.db.sha256 /var/lib/aide/aide-fs-moxa.db
Verified OK
```

8. After the AIDE database' authenticity has been validated, you can run a comparison between current system against the AIDE database using `aide --check -c /etc/aide/aide-fs-moxa.conf`

NOTE

Click the following link for more information on usages of AIDE

<https://manpages.debian.org/trixie/aide/aide.1.en.html>

Intrusion Prevention

Fail2ban is pre-installed in Moxa Industrial Linux as an intrusion prevention software framework designed to prevent against brute-force attacks

NOTE

Click the following link for detail instructions of Fail2ban usage

https://www.fail2ban.org/wiki/index.php/Main_Page

Network Security

Suricata for Network Security Monitoring

1. Overview

Moxa Industrial Linux 4 (MIL4) enhances system security by providing **Suricata**, a high-performance network **intrusion detection and prevention engine (IDS/IPS)**. Suricata enables monitoring of network traffic on Ethernet, Wi-Fi, and cellular interfaces, allowing the system to detect suspicious or potentially malicious activity and generate security-relevant alerts for further analysis.

Suricata is **installed by default** in MIL4 but is **not enabled automatically**. Administrators must explicitly enable the Suricata service before network traffic monitoring becomes active.

This chapter describes the **configuration, operation, and monitoring** of Suricata in MIL4, and provides guidance on deploying network intrusion detection in alignment with industrial security requirements.

2. Supported Network Interfaces

Interface Type	Example Names	Supported
Ethernet	end0, end1, end2, end3	Yes
Wi-Fi Client	mlan0, mlan1	Yes (IP traffic only)
Cellular	wwan0, wwan1	Yes

NOTE

Suricata inspects IP traffic only.

It does not analyze raw Wi-Fi (802.11) management or control frames.

3. When to Enable Suricata

Suricata should be enabled only on WAN-facing interfaces, defined as interfaces connected to external or untrusted networks.

a. Typical WAN-facing interfaces

Interface	Typical Role	Recommendation
Cellular (wwan)	Public carrier network	Enable
Ethernet (end)	Internet or enterprise IT uplink	Enable
Wi-Fi Client mlan, wlan, etc.	Internet or enterprise Wi-Fi	Enable

These interfaces are exposed to:

- Internet scanning
- Exploitation attempts
- Malformed or malicious traffic

b. Interfaces Where Suricata Is NOT Recommended

Suricata should not be enabled on interfaces used exclusively for internal or trusted networks:

Interface	Typical Role	Recommendation
Ethernet (end)	PLCs, sensors, OT devices	Do not enable
Ethernet / Wi-Fi	Isolated OT networks	Do not enable
Wi-Fi AP	Local maintenance access	Do not enable

Reasons:

- No external attack surface
- Increased false alerts
- Unnecessary CPU usage
- OT protocols may be misclassified

c. Rule of Thumb

Enable Suricata only on interfaces that connect to untrusted or external networks.

Do not enable Suricata on interfaces used exclusively for internal OT communication.

4. Service Status and Activation

a. Check service status

```
moxa@moxa-tbbbb1182827:~$ systemctl status suricata
  ● suricata.service - Suricata IDS/IDP daemon
    Loaded: loaded (/usr/lib/systemd/system/suricata.service; disabled;
    preset: enabled)
      Active: inactive (dead)
        Docs: man:suricata(8)
               man:suricatasc(8)
               https://suricata.io/documentation/
moxa@moxa-imoxa0000001:~$
```

Default state:

- Loaded but disabled
- Inactive (dead)

b. Enable and start Suricata

```
sudo systemctl enable --now suricata
```

c. Restart service after configuration changes

```
sudo systemctl restart suricata
```


NOTE

If Suricata is enabled and used as part of the security deployment, it is recommended to add **/etc/suricata/** and **/etc/suricata/rules/** to the AIDE monitored list (**/etc/aide/aide-moxa.conf**) to detect unauthorized changes to IDS configuration and rules.

5. Selecting Interfaces to Monitor

Suricata interfaces are configured in **/etc/suricata/suricata.yaml**

Locate the **existing af-packet: section** and modify it.

Do not create multiple **af-packet** sections.

Below is an example of **af-packet section** that monitor the Ethernet, Cellular, and Wi-Fi interfaces on **UC-3430A-T-LTE-WiFi**:

```
af-packet:
  - interface: end0
    threads: auto
    cluster-id: 99
    cluster-type: cluster_flow
    defrag: yes
    use-mmap: yes

  - interface: wlan0
    threads: auto
    cluster-id: 100
    cluster-type: cluster_flow
    defrag: yes
    use-mmap: yes

  - interface: wwan0
    threads: auto
    cluster-id: 101
    cluster-type: cluster_flow
    defrag: yes
    use-mmap: yes
```


NOTE

- Each monitored interface must use a unique cluster-id.
- Enable only necessary interfaces to reduce CPU usage.

6. Trusted Network Definition (HOME_NET)

Suricata uses HOME_NET to distinguish internal (trusted) traffic from external (untrusted) traffic.

Recommended Default Configuration:

```
vars:
  address-groups:
    HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"
```

This configuration:

- Treats Ethernet and Wi-Fi LAN traffic as trusted
- Treats Cellular traffic as external by default

NOTE

- By default, HOME_NET includes all private IPv4 ranges (RFC1918). For improved accuracy, administrators may narrow HOME_NET to only the subnets used by the deployment (e.g., 192.168.4.0/24 for end1)
- When IPv6 auto configuration is enabled, IPv6 prefixes may be dynamically assigned and change over time. Unless a stable internal IPv6 prefix is defined, it is recommended to keep HOME_NET limited to IPv4 private networks. IPv6 traffic will then be treated as external by default.

7. Rule Management

MIL4 installs Suricata without preloaded detection rules.

Administrators are responsible for selecting, installing, and maintaining Suricata rule sets that align with their security policies and deployment requirements.

When deploying Suricata in IEC 62443-4-2 SL2 environments, the following principles are recommended:

- Focus on detecting activity originating from untrusted or external networks
- Prioritize rules for reconnaissance, exploitation attempts, and protocol violations
- Avoid enabling aggressive blocking actions without prior validation
- Consider the impact of rules on industrial protocols to prevent false positives

NOTE

For instructions on downloading, installing, and updating Suricata rule sets, refer to the official Suricata documentation:

<https://docs.suricata.io/en/latest/rule-management/suricata-update.html#updating-your-rules>

8. Applying and Validating Configuration

- a. Validate configuration

```
sudo suricata -T -c /etc/suricata/suricata.yaml
```

- b. Expected output

```
Configuration provided was successfully loaded.
```

- c. Restart service

```
sudo systemctl restart suricata
```

9. Log Storage

Suricata writes logs to: **/var/log/suricata/**

Log File	Description
fast.log	Human-readable alert summaries
eve.json	Detailed JSON security events
stats.log	Engine performance metrics
suricata.log	Suricata engine logs, including startup messages, rule loading status, warnings, and errors

10. Troubleshooting

Task	Command
Validate Suricata configuration	suricata -T -c /etc/suricata/suricata.yaml
Check engine logs	journalctl -u suricata
Confirm rule load	grep -i "rule" /var/log/suricata/suricata.log
Search for alerts	grep alert /var/log/suricata/*

Issues	Reason	How to Resolve
No alerts generated	Interfaces not monitored	Add correct interface under af-packet
Logs not updating	Disk full / permission	Check /var/log/ and service status
High CPU	Too many rules	Disable irrelevant rules

11. Operational Considerations and Reference Information

Suricata in MIL4 provides configurable network intrusion detection capabilities designed to support industrial security monitoring requirements. By default, Suricata operates in alert-only (IDS) mode to minimize the risk of unintended disruption to operational traffic.

Advanced configurations—such as inline intrusion prevention (IPS), custom rule development, or protocol-specific tuning—require careful evaluation and testing in controlled environments. These configurations may introduce operational risk if deployed without sufficient validation and are therefore recommended only for experienced administrators.

MIL4 intentionally separates **platform security capability** from **operational security policy**, allowing system integrators and asset owners to define detection rules and response actions according to their specific deployment requirements.

For detailed guidance on advanced configurations and rule management, refer to the following authoritative resources:

- Suricata Official Documentation <https://docs.suricata.io/>
- Suricata Rule Management <https://docs.suricata.io/en/latest/rule-management/>
- Suricata Inline / IPS Mode (Advanced) <https://docs.suricata.io/en/latest/ips/inline.html>

Enhance DNS Security

To reduce the risk of DNS manipulation impacting critical services such as time synchronization (NTP) and outbound connections, MIL4 provides multiple approaches for DNS configuration.

Trusted DNS Sources

MIL4 can obtain DNS servers from active network configurations (e.g., carrier-provided or enterprise DNS) or from user-defined resolvers.

Users should ensure that selected DNS sources meet their security and trust requirements.

Secure DNS Mode (Optional)

For environments requiring enhanced DNS security, MIL4 recommend configuring Secure DNS Mode using:

- **systemd-resolved** as the system DNS resolver
- **NetworkManager** for network connectivity management

In this mode, MIL4 can enable:

- **DNS-over-TLS (DoT)** to encrypt DNS traffic
- **DNSSEC** validation to verify DNS data integrity (when supported by upstream resolvers)

NOTE

1. This mode is intended for deployments that prioritize DNS confidentiality and integrity.
2. When Secure DNS Mode is enabled, **MCM should not be enabled**, as it may conflict with **systemd-resolved** DNS management. Users should select a single DNS management approach to avoid configuration conflicts.

NTP Server Configuration and DNSSEC Time Dependency

MIL4 supports [configuring trusted NTP servers](#), including IP-based server configuration to avoid DNS dependency where required.

Users are responsible for selecting trusted NTP servers and defining the appropriate configuration.

Accurate system time is essential for secure network operations. **DNSSEC validation relies on time-based signatures**, and if the system time is incorrect (for example, after a reboot on systems without a persistent RTC), DNS resolution may fail.

Recommendation:

When DNSSEC is enabled, configure trusted NTP servers using **IP addresses** to establish correct system time before relying on DNS resolution.

Network Traffic Monitoring (Optional)

MIL4 provides [Suricata](#) as a network monitoring tool that can inspect DNS and NTP traffic.

Users must enable, configure, and monitor Suricata alerts to detect abnormal patterns or suspicious behavior.

Firewall

In MIL4, firewall management is handled by **firewalld**, a policy-based firewall framework built on top of **nftables**. This represents a change from **MIL3**, where firewall rules were configured directly using **nftables**.

The adoption of firewalld in MIL4 improves usability, policy consistency, and maintainability, especially in industrial deployments with multiple network interfaces and WAN connections.

NOTE

Direct management of nftables rules is disabled by default in MIL4 and is not supported, as it may conflict with firewalld's policy management. Users should manage firewall policies exclusively through **firewalld**.

Firewall Architecture in MIL4:

- firewalld provides a high-level, zone-based firewall management model.
- nftables remains the underlying packet filtering backend, but is managed internally.
- Users should configure firewall behavior using firewalld concepts such as:
 - Zones
 - Services
 - Ports
 - Rich rules

This abstraction allows firewall policies to remain stable even if low-level implementation details change.

MIL 4 provides two system variants with different firewall behaviors:

MIL4 Standard model

The firewalld service is installed but inactive by default. No firewall rules are applied unless explicitly enabled by the user.

MIL4 Secure model

The firewalld service is enabled and active by default. Predefined zones and policies are applied to reduce the attack surface and align with industrial security requirements.

Pre-configured Firewall Rules (Secure Model)

MIL4 **Secure model** provides a pre-configured firewall policy managed by firewalld.

The following table summarizes the effective firewall behavior, rather than low-level implementation details.

Rules Set	Location/Parameters
Default inbound policy	Inbound traffic is denied by default (target: DROP), except for explicitly allowed services
Allowed inbound services	A limited set of essential services is allowed by default (see table below)
Loopback traffic	All loopback traffic is permitted
Established connections	Related and established connections are allowed
ICMP	Common ICMP message types (e.g., echo request/reply) are allowed
Forwarded traffic	Forwarded traffic is denied by default
Outbound traffic	All outbound traffic is allowed

Default Allowed Inbound Services (Secure Model)

The following services are **allowed by default** in the MIL4 Secure model firewall configuration.

These services are managed using **firewalld service definitions**, which may map to one or more network ports.

Service	Protocol	Default Port(s)	Purpose
SSH	TCP	22	Secure remote administration
HTTPS	TCP	443	Secure web management and APIs
DNS	UDP/TCP	53	DNS resolution for system services
NTP	UDP	123	Time synchronization
DHCPv6 Client	UDP	546	IPv6 address and configuration acquisition
mDNS	UDP	5353	Local network service discovery
SNMP	UDP	161	Network monitoring (enabled by default)
SNMP Trap	UDP	162	SNMP trap notifications

NOTE

- The listed ports reflect the **default definitions of firewalld services**.
- Actual behavior may vary if service definitions or ports are customized by the user.
- Additional services and ports must be explicitly enabled by the user.

Security Baseline Consideration

The pre-configured firewall policy is designed to provide a **secure baseline configuration**.

Users are responsible for reviewing and adjusting firewall settings to meet their specific deployment and security requirements.

Basic Firewall Configuration (Services, Ports, Zones)

Core Concepts: Services, Ports, and Zones

Firewall decisions in **firewalld** are determined by three key elements:

- **Services** – Named definitions that represent commonly used network services and their associated ports and protocols (for example, SSH or HTTPS).
- **Ports** – Explicit port and protocol definitions used when a service definition is not available or when custom applications require network access.
- **Zones** – Logical groupings that define the trust level of network interfaces and control which services or ports are allowed on those interfaces.

Zone and Default Zone Behavior

In **firewalld**, firewall rules are always applied to a specific **zone**.

When using **firewall-cmd**, the target zone is determined as follows:

If the **--zone** option is specified, the rule is applied to the specified zone.

If no **--zone** option is specified, the rule is applied to the default zone.

The default zone may not necessarily be the same as the active zone currently associated with a network interface.

As a result, rules added to the default zone may not take effect if no interfaces are bound to that zone.

To check the current default zone, use the following command:

```
Sudo firewall-cmd --get-default-zone
```

Best Practice:

To avoid unintended configurations, it is strongly recommended to explicitly specify the target zone when using **firewall-cmd**.

Assigning Interfaces to Zones

In **firewalld**, firewall rules are enforced based on the **zone assigned to a network interface**.

Assigning interfaces to the correct zone is a prerequisite for firewall rules to take effect. An interface can be assigned to only **one zone at a time**.

1. Viewing Interface-to-Zone Mappings

Example: to display the currently active zones and the network interfaces bound to each zone:

```
sudo firewall-cmd --get-active-zones
mg
interfaces: ens3 dummy0
```

2. Assigning an Interface to a Zone (Runtime)

Example: to assign a network interface to a zone at runtime:

```
sudo firewall-cmd --zone=mg --add-interface=ens3
```

This change takes effect immediately but will not persist after a reboot.

3. Assigning an Interface to a Zone (Permanent)

Example: to make the assignment persistent across reboots, use the **--permanent** option:

```
sudo firewall-cmd --zone=mg --add-interface=ens3 --permanent
sudo firewall-cmd --reload
```

4. Moving an Interface Between Zones

If an interface is already assigned to a different zone, it should be removed before reassignment.

Example: Move interface **ens3** from its current zone to **mg**:

```
sudo firewall-cmd --remove-interface=ens3
sudo firewall-cmd --zone=mg --add-interface=ens3 --permanent
sudo firewall-cmd --reload
```

Recommended Configuration Method

Basic firewall configuration using services, ports, and zones is suitable for most deployment scenarios.

Advanced filtering requirements—such as rate limiting or source-based access control—are covered separately in the **Rich Rules** section.

Use Case	Recommended Method
Standard protocol (e.g., SSH, HTTPS)	Service
Custom application	Port
Network segmentation	Zone

If **firewalld** is not active, enable it first:

```
sudo systemctl enable firewalld
sudo systemctl start firewalld
```

Allowing a Service

firewalld manages access primarily through services, not raw ports.

Example: Allow SSH access:

```
sudo firewall-cmd --add-service=ssh --permanent
sudo firewall-cmd --reload
```

firewalld manages access primarily through services, not raw ports.

Example: Allow HTTPS access:

```
sudo firewall-cmd --add-service=https --permanent
sudo firewall-cmd --reload
```

Allowing a Specific Port (When No Service Exists)

If an application uses a custom port, a direct port rule may be added.

Example: Allow TCP port 8443

```
sudo firewall-cmd --add-port=8443/tcp --permanent
sudo firewall-cmd --reload
```

Removing Access (Hardening)

Example: Disable SSH access

```
sudo firewall-cmd --remove-service=ssh --permanent
sudo firewall-cmd --reload
```

Verify configuration

```
firewall-cmd --get-active-zones
firewall-cmd --list-all
```

Advanced Firewall Configuration (Rich Rules)

Rich rules allow advanced firewall policies that cannot be expressed using services and ports alone. Rich rules should be used only when basic service or port configuration is insufficient.

Common usage of rich rules

- Rate limiting
- Source-based access
- Protocol-specific control
- Attack mitigation

Example 1: ICMP Rate-limiting (Ping Flood Protection)

Allow ICMP echo requests but limit them to 5 per second:

```
sudo firewall-cmd --add-rich-rule='rule family="ipv4" icmp-type name="echo-request" limit value="5/s" accept' --permanent
```

Reloading the firewalld configuration

```
sudo firewall-cmd --reload
```

Verify result:

```
sudo firewall-cmd --list-rich-rules
rule family="ipv4" protocol value="icmp" accept limit value="5/s"
```

Example 2: Rate-limit NTP Requests (UDP Amplification Mitigation)

Limit incoming NTP requests to prevent abuse:

```
sudo firewall-cmd --add-rich-rule='rule family="ipv4" port protocol="udp" port="123" limit value="10/s" accept' --permanent
```

Reloading the firewalld configuration

```
sudo firewall-cmd --reload
```

Verify result:

```
sudo firewall-cmd --list-rich-rules
rule family="ipv4" port port="123" protocol="udp" accept limit value="10/s"
```

Use case:

Helps reduce exposure to NTP amplification attacks while preserving time synchronization.

Example 3: Allow HTTPS Only from a Trusted Subnet

```
sudo firewall-cmd --add-rich-rule='rule family="ipv4" source address="192.168.100.0/24" service name="https" accept' --permanent
```

All other HTTPS traffic is implicitly denied.

Reloading the firewalld configuration

```
sudo firewall-cmd --reload
```

Verify result:

```
sudo firewall-cmd --list-rich-rules
rule family="ipv4" source address="192.168.100.0/24" service name="https" accept
```

NOTE

For advanced configurations—such as complex zone design, rich rules, logging, rate limiting, or custom policies—please refer to the official firewalld documentation:

- Firewalld Official Documentation <https://firewalld.org/documentation/>
- Firewalld Rich Language Guide <https://firewalld.org/documentation/man-pages/firewalld.richlanguage.html>

Service and Ports

Network Service Exposure and Port Usage

This section lists the network services and ports that may be used by MIL4 as part of the operating system or built-in features.

In the Standard model, no firewall is enabled by default.

Any service that is running and listening on a network interface may therefore be externally reachable.

In the Secure model, the same system services exist; however, their external exposure is additionally restricted by firewall rules.

Default (Out-of-Box) Network Services

Service	Protocol	Status	Role	External Exposure (Default State)	Purpose
SSH (including SFTP and SCP)	TCP (22)	active	Server	External	Secure remote system administration and file transfer
mDNS (Avahi)	UDP (5353)	active	Multicast	Link-local multicast	Device discovery
HTTPS	TCP (443)	inactive	Server/client	No (unless enabled)	Secure management access
SNMP Agent	UDP (161)	inactive	Server	No	Device monitoring
SNMP Trap	UDP (162)	inactive	Client	No	Event notification
DNS (local resolver)	UDP/TCP (53)	active	Client	Loopback only	Name resolution
NTP (chrony)	UDP (123)	active	Client	External	Time synchronization (client mode)
DHCPv4 Client	UDP (68)	active	Client	No	IPv4 address assignment
DHCPv6 Client	UDP (546)	inactive	Client	No	IPv6 address assignment

Default Firewall-Permitted Services (Secure Model Only)

This section describes the **default firewall policy** applied in the Secure model.

In the Secure model, **firewalld is enabled by default** and enforces a **default-deny policy for both inbound and outbound traffic**.

Only services explicitly permitted by the firewall are allowed to accept incoming connections or initiate outbound communication.

The following table lists the default firewall allowlist in the Secure model.

Default Firewall Allowlist (Secure Model)

firewalld Service	Protocol	Port	Traffic Direction	Purpose
ssh	TCP	22	Inbound	Remote administration
https	TCP	443	Inbound / Outbound	Secure management and application traffic
snmp	UDP	161	Inbound	Device monitoring
snmptrap	UDP	162	Outbound	SNMP event notification
mdns	UDP	5353	Multicast	Device discovery
dns	UDP/TCP	53	Outbound	Name resolution
ntp	UDP	123	Outbound / Inbound	Time synchronization
dhcpcv6-client	UDP	546	Outbound	IPv6 address assignment

NOTE

Firewall permission defines which traffic is allowed to pass through the firewall. It does not imply that the corresponding service is enabled or actively listening.

How to Disable Unused Interface

To enhance cybersecurity by reducing the attack surface, disable any unused interfaces using the [Moxa Computer Interface Manager \(MCIM\)](#)

- Serial console port
- Serial port
- CAN port
- Ethernet port
- External storage (e.g., USB, SD)

How to Disable Unnecessary Services

You can use `#ss` to list all the current running processes using with the associated service, protocol, and network port.

```
moxa@moxa-tbbbb1182827:~$ sudo ss -tulpn
Netid      State      Recv-Q      Send-Q      Local Address:Port
Peer Address:Port      Process
tcp        LISTEN      0          128      0.0.0.0:22
0.0.0.0:*
          users:(("sshd",pid=974,fd=3))
tcp        LISTEN      0          128      [::]:22
[::]:*
          users:(("sshd",pid=974,fd=4))
```

You can disable a daemon or service by killing process ID (PID) directly. For example:

```
moxa@moxa-tbbbb1182827:~$ sudo kill 974
```

Or you can just stop and disable the service using `#systemctl`. For example:

```
moxa@moxa-tbbbb1182827:~$ sudo systemctl stop sshd
moxa@moxa-tbbbb1182827:~$ sudo systemctl disable sshd
```

Services Enabled by Default

Below is the list for the services enabled by default in the secure model of the Moxa Arm-based computers.

Service Name	Description
auditd.service	Security Audit log service
dbus.service	System Message Bus
fail2ban.service	Fail2ban IPS (intrusion prevention software)
getty@tty1.service	Getty on tty1
ifupdown-pre.service	Helper to synchronize boot up for ifupdown
kmod-static-nodes.service	Create list of static device nodes for the current kernel
ModemManager.service	DBus-activated daemon which controls mobile broadband (2G/3G/4G) devices and connections
moxa-connection-manager.service	Moxa Connection Manager (MCM)
moxa-guardian.service	Initializing security configuration for Moxa Industrial Linux
moxa-sys-rdy.service	A service that lights up the "READY" or "RDY" when the computer successfully boots up
moxa-system-manager-init.service	Moxa System Manager initialization service
moxa-system-manager.service	Moxa System Manager
MoxaComputerInterfaceManager.service	Moxa Computer Interface Manager
moxa-hostname.service	This service is designed to execute automatically during system startup, setting the hostname to a default unique value in the format moxa-[serial number]. If you prefer to define a custom hostname, you can disable this service by utilizing the 'systemctl disable moxa-hostname.service' command.
networking.service	Raises or downs the network interfaces
NetworkManager.service	Network Manager
Firewalld.service	Manages host-based firewall rules to control inbound and outbound network traffic.
bluetooth.service	Provides Bluetooth protocol stack and driver support; no Bluetooth application services are enabled by default.
avahi-daemon.service	Provides mDNS service discovery for local network device identification.
polkit.service	For controlling system-wide privileges is Moxa Industrial Linux
rsyslog.service	System Logging Service
serial-getty@ttymxc0.service	Serial Getty on ttymxc0al-getty@ttymxc0.service
snmpd.service	Linux service for the Simple Network Management Protocol (SNMP)
ssh.service	SSH Server
sysstat.service	A collection of performance monitoring tools for Linux.
systemd-journal-flush.service	Flush journal to persistent storage
systemd-journald.service	Journal service
systemd-logind.service	User login management
systemd-modules-load.service	Early boot service that loads kernel modules
systemd-random-seed.service	Service that loads an on-disk random seed into the kernel entropy pool during boot and saves it at shutdown
systemd-remount-fs.service	early boot service that applies mount options listed in fstab(5)
systemd-sysctl.service	An early boot service that configures sysctl(8) kernel parameters
systemd-sysusers.service	Creates system users and groups, based on the file format and location specified in sysusers.d(5)
systemd-timesyncd.service	System service that synchronizes the local system clock with a remote Network Time Protocol (NTP) server
systemd-tmpfiles-setup-dev.service	Create Static Device Nodes in /dev
systemd-tmpfiles-setup.service	Create Volatile Files and Directories
systemd-udev-trigger.service	Coldplug all udev devices
systemd-udevd.service	Lists to kernel uevents
systemd-update-utmp.service	Service that writes SysV runlevel changes to utmp and wtmp, as well as the audit logs
systemd-user-sessions.service	a service that controls user logins through pam_nologin(8)
user-runtime-dir@1000.service	Default user

Service Name	Description
user@1000.service	Default user
vnstat.service	network traffic monitor
watchdog.service	Watchdog service
wpa_supplicant.service	WPA supplicant

Managing Resources

Setting The Process Priority

A process can be manually adjusted to increase or decrease its priority. Use the **top** or **ps** commands to find out the process priority.

```
moxa@moxa-tbbbb1182827:/# sudo top
top - 22:08:43 up 6 min,  1 user,  load average: 0.01, 0.04, 0.01
Tasks: 105 total,  1 running, 104 sleeping,  0 stopped,  0 zombie
%Cpu(s): 0.2 us, 0.8 sy, 0.0 ni, 98.8 id, 0.1 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 2068192 total, 1874520 free, 57416 used, 136256 buff/cache
KiB Swap: 0 total, 0 free, 0 used. 1799712 avail Mem

PID USER      PR  NI      VIRT      RES      SHR S %CPU %MEM     TIME+ COMMAND
 1 root      20   0     9492     6220    5236 S  0.0  0.3  0:00.98 systemd
 2 root      20   0         0         0    0 S  0.0  0.0  0:00.00 kthreadd
 3 root      20   0         0         0    0 S  0.0  0.0  0:00.01 ksoftirqd/0
 4 root      20   0         0         0    0 S  0.0  0.0  0:00.02 kworker/0:0
 5 root      0  -20         0         0    0 S  0.0  0.0  0:00.00 kworker/0:0H
 6 root      20   0         0         0    0 S  0.0  0.0  0:00.01 kworker/u2:0
 7 root      20   0         0         0    0 S  0.0  0.0  0:00.02 rcu_sched
...
...
```

You can also use the **ps** command with the **-1**, long list option to find out the priority of the process.

```
moxa@moxa-tbbbb1182827:/# sudo ps -efl
F S UID          PID  PPID  C PRI  NI ADDR SZ WCHAN  STIME TTY      TIME CMD
4 S root          1     0  0  80   0 - 2373 ep_pol 22:02 ?  00:00:01
/sbin/init
1 S root          2     0  0  80   0 -          0 kthrea 22:02 ?  00:00:00
[kthreadd]
1 S root          3     2  0  80   0 -          0 smpboo 22:02 ?  00:00:00
[ksoftirqd/0]
1 S root          5     2  0  60  -20 -          0 worker 22:02 ?  00:00:00
[kworker/0:0H]
1 S root          6     2  0  80   0 -          0 worker 22:02 ?  00:00:00
[kworker/u2:0]
1 S root          7     2  0  80   0 -          0 rcu_gp 22:02 ?  00:00:00
[rcu_sched]
1 S root          8     2  0  80   0 -          0 rcu_gp 22:02 ?  00:00:00
[rcu_bh]
...
```

The PRI (Priority) or NI (Nice) is the priority of the process. The PRI is adjusted by kernel automatically. The NI can have a value in the range -20 to 19. A smaller value means that the program could use more CPU resources.

The nice utility can be given a specific nice value while running a program. This example shows how to launch the **tar** utility with the nice value 20.

```
moxa@moxa-tbbbb1182827:/# sudo nice -n 20 tar -czvf TheCompressFile.tar /src1
/src2 ...
OR
moxa@moxa-tbbbb1182827:/# sudo nice -adjustment 20 tar -czvf
TheCompressFile.tar /src1 /src2 ...
```

You can use the **renice** utility to dynamically adjust the nice value of a program. This example uses renice to adjust the audtid, PID 639, with highest priority as 20.

```
moxa@moxa-tbbbb1182827:/# sudo renice -n 20 -p 639
moxa@moxa-tbbbb1182827:/# sudo ps -efl|grep auditd
1 S root      639      1  0  75 -20 - 1519 poll_s 22:02 ?          00:00:00
/sbin/auditd -n
...
```


NOTE

Click the following link for more information on usages of nice and renice

<https://manpages.debian.org/trixie/coreutils/nice.1.en.html>

<https://manpages.debian.org/trixie/bsdutils/renice.1.en.html>

Setting the Process I/O Scheduling Class and Priority

The **ionice** command can adjust the priority of the program using I/O. The class and priority are adjustable for a process.

-c class	0: none 1: realtime 2: best-effort 3: idle
-n classdata	The realtime and best-effort can set from 0 to 7. A smaller value means the program has a higher priority.
-p PID	Process ID

```
moxa@moxa-tbbbb1182827:/# sudo ps -l
F S  UID  PID  PPID  C PRI  NI ADDR SZ WCHAN  TTY          TIME CMD
4 S  0  895  886  0  80  0 - 1794 wait    pts/0  00:00:00 bash
4 S  0 1099  895  0  80  0 - 1659 poll_s  pts/0  00:00:00 sudo
4 R  0 1100 1099  0  80  0 - 1850 -    pts/0  00:00:00 ps
moxa@moxa-tbbbb1182827:/# sudo ionice -c 2 -n 0 -p 895
moxa@moxa-tbbbb1182827:/# sudo ionice -p 895
best-effort: prio 0
```


NOTE

Click the following link for more information on usages of ionice

<https://manpages.debian.org/trixie/util-linux/ionice.1.en.html>

Limiting the CPU Usage of a Process Using cpulimit

cpulimit is a simple program that attempts to limit the CPU usage of a process (expressed in percentage, not in CPU time). This is useful to control batch jobs, when you don't want them to eat too much CPU.

This example, use the cpulimit to limit the usage of sshd process CPU limit percentage to 25% in background. The -p is the process ID. The -e switch take the executable program file name. The -l is the CPU limit percentage. The option, -b, to run cpulimit in the background, freeing up the terminal.

```
moxa@moxa-tbbbb1182827:/# sudo cpulimit -p 895 -l 25 -b
```


NOTE

Click the following link for more information on usages of cpulimit

<https://manpages.debian.org/trixie/cpulimit/cpulimit.1.en.html>

Limiting the Rate

Refer to the [Chapter 8 Advanced Firewall Configuration \(Rich Rules\)](#) to customize the network limitation of the firewall configuration.

Audit Log

In this section, we will introduce the audit event log design in Moxa Industrial Linux and bootloader, including the security event monitored and recommended response and approach for audit processing failures.

Linux Audit log

Auditd is being used in Moxa Industrial Linux for system administrators to monitor detailed information about system operation. It provides a way to track and record security-relevant information on the system.

1. Log partition size:

Computer Series	Log partition size
UC-1222A/2222A	MIL 3.1: 256 MB MIL 3.3 and later: 1024 MB
UC-3400A	1024 MB
UC-4400A	1024 MB
UC-8600A	1024 MB
V1200	1024 MB

2. Log partition applies Linux Unified Key Setup (LUKS) encryption and restrict non root user from access
3. Logs are stored under `/var/log/audit/` and the log format follows **auditd** standard.

- Below is a reference of where to find the commonly used log data fields in audit log

Common Log Data Fields	Data Fields in auditd log
timestamp	msg=audit(TIMESTAMP)
source	proctitle, comm, exec, uid, gid, etc.
category	key
type	type
eventID	pid, ppid

4. Audit log records are automatically rotated daily and up to 14 archived logs are kept at a time. When log rotates, the oldest archive will be deleted if 14 archived logs already exist.
 - Audit log rotation rule can be modified in `/etc/logrotate.d/auditd`
5. The log timestamp is the local system time which synchronized with a remote Network Time Protocol (NTP) server.
 - For time synchronization status and configuration, refers to [timedatectl\(1\)](#)

NOTE

Click the following link for more information on usages of auditd and log search
<https://manpages.debian.org/trixie/auditd/auditd.8.en.html>
<https://manpages.debian.org/trixie/auditd/ausearch.8.en.html>

Below are the security events that Moxa Industrial Linux is pre-configured to monitor in Secure model of Moxa Arm-based computer

Event Category	Event Logged	File or Directory to Monitor	key used for ausearch
Access control	Users logins, logouts, system events, etc.	/var/log/wtmp.db	session
Backup and restore	Use of Moxa System Manager tool	/sbin/mx-system-mgmt	system_mgmt
Control System	Shutdown system	/bin/systemctl	control_system
	Power off system		
	Reboot system		
	Halt system		
	Use of APT package management system	/usr/bin/apt	system_package
	Use of aptitude tool	/usr/bin/aptitude	system_package
	Use of add-apt-repository tool	/usr/bin/apt-add-repository	system_package
	Use of apt-get tool	/usr/bin/apt-get	system_package
	Use of dpkg package manager tool	/usr/bin/dpkg	system_package
Security configurations	Add user configuration change	/etc/adduser.conf	adduser
	AIDE configuration and database change	/etc/aide	aide
	Audit configuration and log change	/etc/audit /var/log/audit	auditconfig auditlog
	Chrony configuration change	/etc/chrony	chrony
	Fail2ban configuration change and log change	/etc/fail2ban /var/log/fail2ban.log	fail2ban fail2ban-log
	Fail lock configuration change	/etc/security/faillock.conf	faillock
	Firewalld configuration change	/etc/firewalld/firewalld.conf /etc/firewalld/zones/	firewalld
	Login policy change	/etc/login.defs	login
	Log rotate configuration change	/etc/logrotate.conf /etc/logrotate.d	logrotate
	Moxa Computer Interface Management configuration change	/etc/moxa/ MoxaComputerInterfaceManager	mcim
	Moxa Connection Manger configuration change	/etc/moxa/MoxaConnectionManager	mcm
	Moxa Guardian configuration and log change	/etc/moxa/moxa-guardian /var/lib/moxa-guardian	moxa-guardian moxa-guardian-registry
	Password policy change	/etc/pam.d	pam
	Linux system wide environment configuration change	/etc/profile /etc/profile.d	profile
	Password rule change	pwquality.conf pwquality.conf.d	pwquality
	Rsyslog configuration change	/etc/rsyslog.conf /etc/rsyslog.d	rsyslog
	SSH (Secure Shell) configuration change	/etc/ssh/sshd_config /etc/ssh/sshd_config.d	sshd
	Sudo configuration change	/etc/sudoers	sudo
	Kernel parameters change	/etc/sysctl.conf /etc/sysctl.conf.d	sysctl

Bootloader Audit Log

1. Log is stored in SPI flash with **1MB** storage size
2. Log can be viewed via **(3) Advance Setting > (8) View Bootloader Log** in Bootloader menu
3. Maximum number of logs is 4,000 records, where the oldest log will be overwritten when the maximum capacity is reached.
4. The time stamp of the log read from the local Real-time Clock (RTC) which is synchronize with Network Time Protocol (NTP) server.
5. Log format and log events are described below

Audit Log Structure

Header	Explanation	Possible Values
Time	Time stamp of the device	Format: [YYYY-MM-DDThh:mm:ss] For example: [2022-06-03T15:54:38]
User	Identifies the authenticated user	Admin
Category	Event category	<ul style="list-style-type: none"> • System • Bootcfg (refers to boot configuration) • Install • Security
Event ID	ID of a logged event	1 ~ 223
Event Message	Description of the logged event	See below table for the list of events

Audit Events

Category	Event ID	Event Type	Event Message
System	1	Info	All bootloader configuration set to default
System	2	Info	Exit bootloader and reboot system
System	3	Info	Exit bootloader and boot to Linux
System	25	Emerg	eMMC lifetime status: End of Life (EOL)
System		Alert	eMMC lifetime status: 10% remaining
System		Critical	eMMC lifetime status: 20% remaining
bootcfg	4	Info	Set boot configuration to default ok
bootcfg		Warning	Set boot configuration to default fail
bootcfg	5	Info	Set boot from SD/USB/eMMC ok
bootcfg		Warning	Set boot from SD/USB/eMMC fail
bootcfg	6	Info	Full Mode: • Bootarg and bootcmd changed Append Mode: • Appended bootargs changed • Appended bootcmd changed
bootcfg		Warning	Full Mode: • Bootarg and bootcmd changed failed Append Mode: • Appended bootargs changed failed
bootcfg	7	Info	View boot configuration setting ok
Install		Info	Install system image from TFTP ok
Install		Warning	Destination net unreachable
Install		Warning	Hash/Signature file not found
Install	8	Warning	System image file error
Install		Warning	File size is too large
Install		Warning	Upgrade system image fail
Install		Alert	System image authenticity check fail
Install		Info	Install system image from SD ok
Install		Warning	SD/USB/eMMC device not found
Install		Warning	Hash/Signature file not found
Install	9	Warning	System image file error
Install		Warning	File size is too large
Install		Warning	Upgrade system image fail
Install		Alert	System image authenticity check fail
Secure	10	Info	Install system image from USB ok
Secure		Warning	SD/USB/eMMC device not found

Category	Event ID	Event Type	Event Message
Secure		Warning	Hash/Signature file not found
Secure		Warning	System image file error
Secure		Warning	File size is too large
Secure		Warning	Upgrade system image fail
Secure		Alert	System image authenticity check fail
Secure	11	Info	TFTP setting changed
Secure	12	Info	Login success
Secure		Warning	login fail
Secure	13	Alert	Boot failure due to system image integrity or authenticity check fail
Secure	14	Info	Admin password disabled
Secure		Info	Admin password enabled
Secure	15	Info	Admin password set to default
Secure	16	Info	Admin password changed
Secure	17	Info	Admin password policy changed
Secure	18	Info	Advance settings set to default
Secure	19	Info	Auto reboot threshold changed
Secure	20	Info	Login message changed
Secure	21	Info	Invalid Login Attempts changed
Secure	22	Info	Clear TPM ok
Secure		Warning	Clear TPM fail
audit	23	Info	View bootloader log ok

Audit Failure Response

The section is a guideline for protection of critical system functions in case of audit processing failure. Without appropriate response to audit processing failure, an attacker's activities can go unnoticed, and evidence of whether the attack led to a breach can be inconclusive. Following are some common approaches:

1. Log rotation

Log rotation is enabled by default in Moxa Arm-based computer to prevent audit storage capacity full. Refers to **Linux Audit Log** and **Bootloader Audit log** sections for details.

In Linux, configure the logrotate to manage disk space usage effectively and prevent running out of storage. The logrotate configuration file is at /etc/logrotate.config and all the files in /etc/logrotate.d/* to rotate the log file.

This example we configure /etc/logrotate.d/rsyslog to rotate /var/log/syslog while it overs the size 2M with only 3 rotation.

```
/var/log/syslog

{
  {
    rotate 3
    maxsize 2M
    ...
  }
}
```

2. Saving the logs in external storage

- For auditd, change the file path of parameter **log_file** in **/etc/audit/auditd.conf**
- For rsyslog, change the default file path **/var/log/** in **/etc/rsyslog.conf** to external storage

3. Use a centralized log Server

Use a centralized log management system to collect and store the logs from Log from multiple devices. Refers to [How to Set Up Centralized Logging on Linux with Rsyslog](#).

4. Assign appropriate action when audit storage space is full, or error occurs

You can configure **space_left** and **space_left_action** parameters in **/etc/audit/auditd.conf** to specify the remaining space (in megabytes or %) for low disk alert and what action to take. The actions are ignore, syslog, rotate, exec, suspend, single, and halt.

In example below, warning email will be sent to email account specified in **action_mail_acct** parameter when the free space in the filesystem containing log files drop below 75 megabytes

```
space_left = 75
space_left_action = email
```

Configure **disk_full_action** and **disk_error_action** in **/etc/audit/auditd.conf** to specify what actions to take when audit storage disk got error or full. The actions are ignore, syslog, rotate (for disk full only), exec, suspend, single, and halt.

Refers to <https://manpages.debian.org/trixie/auditd/auditd.8.en.html> for detail explanation of each action and parameters.

Security Diagnosis Tool (Moxa Guardian)

The secure models of Moxa's Arm-based computers come with built-in security compliant with the IEC 62443-4-2 Security Level 2 requirements. However, on many occasions, the default security settings could unintentionally change, especially when customizing the computer, making them not adhere to the standard.

Moxa Guardian is a security diagnosis tool that provides an overview of the gap between your current security configurations and the IEC 62443-4-2 Security Level 2 standards. You can also use the tool to restore the security configurations to the default out-of-box secured configurations.

Use the **# mx-guardian** command to display the menu page.

```
Moxa Guardian is a cli tool allows users to operate security configs

Moxa Guardian is a CLI security diagnosis tool that gives you an overview of
the gap between the current security configurations against the IEC 62443-4-2
Security Level 2 host device requirement and the Moxa recommended security
configurations.

Usage:
  mx-guardian [command]

Available Commands:
  diagnose  Diagnose security settings and output report
  help      Help about any command
  set       Apply a pre-defined security profile
  version   Show Moxa Guardian version and build info

Flags:
  -f, --force    force mode
  -h, --help     help for mx-guardian
  --no-color   disable color
  -q, --quiet   quiet mode (imply force)
  -v, --verbose verbose mode
  --version    get version

Use "mx-guardian [command] --help" for more information about a command.
```


ATTENTION

As the Moxa computer is an open platform that allows users to install any software, Moxa Guardian's diagnosis tool only compares the current configurations against the default out-of-box IEC 62443-4-2 compliance configurations. For example, if additional protocols are installed, Moxa Guardian will not diagnose such protocols' communication integrity and authenticity capabilities. It is the responsibility of the user to follow the hardening guidelines and the IEC 62443 standard to meet the security requirements.

Diagnosing IEC 62443-4-2 Security Level 2 Compliance

Use `# mx-guardian diagnose <flags>` to initiate a diagnosis of the current security configurations against the default out-of-box secured configuration, which include all IEC 62443-4-2 security level 2 compliance configurations and also additional Moxa recommended security setting not covered in IEC 62443 standard. The diagnosed result are shown in the sequential orders of IEC 62443-4-2 requirement (CR 1.1 to CR 7.8), followed by Moxa's recommended security settings.

Flags	Description
<code>-d</code> or <code>-detail</code>	Show details including the reason and guideline for the failed requirements
<code>-h</code> or <code>-help</code>	Print the help menu for diagnose command
<code>-o</code> or <code>-output <target filepath></code>	Output the diagnose result to a file

The diagnosis result could be one of the following:

- **PASS:** The device's security configuration meets the IEC 62443-4-2 security level 2 standard or Moxa recommended setting.
- **FAIL:** The device's security configuration fails to meet the IEC 62443-4-2 security level 2 standard or Moxa recommended setting.
- **INFO:** The device's security configuration meet the IEC 62443-4-2 security level 2 standard but additional configuration can be applied if suitable.

An example of Moxa Guardian's diagnosis output is given below:

```
root@moxa-tbbbb1182816:/home/moxa# mx-guardian diagnose -d
INFO[2022-11-14T12:19:33Z] start diagnosing requirement
INFO[2022-11-14T12:19:33Z] diagnose requirement all           detail=true
#####
# As the Moxa computer is an open platform that allows users to install any software
# they desire, Moxa Guardian's diagnosis tool only compares the current configurations
# against the default out-of-box IEC-62443-4-2 compliance configurations
#####

CR 1.1: Human user identification and authentication
-----
[+] Precondition
  > Package
    - openssh-server
    - openssh-client
    - libpam-modules           [PASS]
    [PASS]
    [PASS]

[+] Check
  > Option: SSHD:UsePAM           [PASS]
    - info: Check UsePAM is set to yes in sshd
    - guide: Modify or add "UsePAM yes" in /etc/ssh/sshd_config or /etc/sshd/sshd_config.d/*.conf

CR 1.2: Software process and device identification and authentication
-----
[+] Precondition
  > Package
    - openssh-server
    - libpam-modules           [PASS]
    [PASS]

[+] Check
  > Option: SSHD:UsePAM           [PASS]
    - info: Check UsePAM is set to yes in sshd
    - guide: Modify or add "UsePAM yes" in /etc/ssh/sshd_config or /etc/sshd/sshd_config.d/*.conf
  > Option: SSHD:PubKeyAuthentication           [PASS]
    - info: Check PubkeyAuthentication is set to yes in sshd
    - guide: Modify or add "PubkeyAuthentication yes" in /etc/ssh/sshd_config or
      /etc/sshd/sshd_config.d/*.conf

CR 1.3: Account management
-----
[+] Precondition
  > Package
    - passwd           [PASS]

CR 1.4: Identifier management
-----
[+] Precondition
  > Package
    - base-passwd
    - passwd           [PASS]
    [PASS]

CR 1.5: Authenticator management
```

Restoring the Security Configuration to the Default

Use # **mx-guardian set <command> <flags>** to restore the Moxa Arm-based security configuration to the default out-of-box IEC 62443-4-2 compliance secured configurations.

Command	Description
secure	Restore the Moxa Arm-based configuration to a pre-defined security profile

Flags	Description
-d or --detail	Show details including the reason and guideline for the failed requirements
-h or --help	Print the help menu
-m or --mode <string>	<p>The <string> parameter support 2 values (m1 or m2) Description of each mode is given below :</p> <p>M1: Apply only the IEC 62443-4-2 security level 2 required settings M2: Apply both M1 and Moxa recommended settings <i>Note : M2 is the default out-of-box security setting</i></p>

An example of restoring the computer's security profile to M2 (IEC 62443-4-2 security level 2 and Moxa recommended settings) is given below:

```
moxa@moxa-tbzkb1090923:~$ sudo mx-guardian set secure -m m2
INFO[2022-11-10T05:53:51Z] start setting secure command
INFO[2022-11-10T05:53:51Z] apply all changes with
force=false mode="IEC62443-4-2 and MOXA suggested settings" quiet=false
INFO[2022-11-10T05:53:51Z] no changes
file=/etc/adduser.conf
INFO[2022-11-10T05:53:51Z] no changes
file=/etc/audit/auditd.conf
INFO[2022-11-10T05:53:51Z] no changes
file=/etc/profile.d/99-moxa-profile.conf
INFO[2022-11-10T05:53:51Z] no changes
file=/etc/security/faillock.conf
INFO[2022-11-10T05:53:51Z] no changes
file=/etc/security/pwquality.conf.d/99-moxa-pwquality.conf
INFO[2022-11-10T05:53:51Z] no changes
file=/etc/login.defs
INFO[2022-11-10T05:53:51Z] no changes
file=/etc/logrotate.d/00-moxa-logrotate.conf
INFO[2022-11-10T05:53:51Z] no changes
file=/etc/ssh/sshd_config.d/00-moxa-sshd.conf
INFO[2022-11-10T05:53:51Z] no changes
file=/etc/sysctl.d/99-moxa-sysctl.conf
INFO[2022-11-10T05:53:51Z] no changes
file=/etc/rsyslog.d/99-moxa-rsyslog.conf
```

Attention : you must reboot your computer for the changes to take effect

ATTENTION

You must reboot your computer for the changes to take effect.

Diagnosing EN 18031:1 EU RED Cybersecurity Compliance

Both MIL4 Standard and Secure models are compliance with EN 18031:1 EU RED Cybersecurity by default.

You can use the command `# mx-guardian red <command> <flags>` to diagnose the computer's compliance with RED requirements and configure it to meet RED compliance standards.

```
Use "mx-guardian red [command] --help" for more information about a command.
root@moxa-imoxa1000038:/# mx-guardian red -h

Your device is configured RED profile by default.
Use 'mx-guardian red diagnose' to check RED profile is changed or not.

Usage:
  mx-guardian red [command]

Available Commands:
  diagnose  Diagnose RED settings and output report
  set       Apply RED profile

Flags:
  -h, --help    help for red

Global Flags:
  -f, --force    force mode
  -q, --quiet    quiet mode (imply force)
  -v, --verbose  verbose mode

Use "mx-guardian red [command] --help" for more information about a command.
root@moxa-imoxa1000038:/#
```

When you run `# mx-guardian red set`, the following configurations are applied to bring your computer into compliance with RED requirements.

Configure file	Description
/etc/ssh/sshd_config.d/00-moxa-sshd.conf	Set sshd Cipher to chacha20-poly1305@openssh.com,aes128-ctr,aes192-ctr,aes256-ctr,aes128-gcm@openssh.com,aes256-gcm@openssh.com
	Set sshd kexalgorithm to: curve25519-sha256,curve25519-sha256@libssh.org,ecdh-sha2-nistp256,ecdh-sha2-nistp384,ecdh-sha2-nistp521
	Set sshd MACs to : hmac-sha2-256-etm@openssh.com,hmac-sha2-512-etm@openssh.com,hmac-sha2-256,hmac-sha2-512
	Set sshd MaxAuthTries to 5
	Set sshd PubkeyAuthentication to yes
	Set sshd usePAM to yes
	Set sshd LoginGraceTime to 60
/etc/security/faillock.conf	Set deny=5
	Enable even_deny_root
	Set fail_interval=60
	Set root_unlock_time=300
	Set unlock_time=300
/etc/snmp/snmpd.conf	Remove rocommunity
	If createUser exists, disable MD5 SHA-224 md5 sha-224 DES des
/etc/security/pwquality.conf.d/99-moxa-pwquality.conf	Set dictcheck=1
/etc/pam.d/common-password	Enable enforce_for_root
/etc/login.defs	Enable libpam-pwquality.so
	Set LOGIN_TRIES=5
	Set LOGIN_TIMEOUT=60

9. Security Hardening Guide

In this chapter, we will provide guidance on how to deploy and operate [Secure model](#) of Moxa Arm-based computer in a secure manner.

Defense-in-depth Strategy

Security Layer	Security Measures	Threat mitigated/handled	Responsibility
Policy and procedure	Establish policies and procedures to guide employee on their role and responsibilities to for safe use of security sensitive assets. Refers to Operation and Maintenance section for some recommendations	Vulnerabilities created due to employee lack of security policies and procedures awareness Malicious code attack that could create or exploit system vulnerabilities (Threat ID #6)	Asset owner (Essential)
Perimeter Security	Use LTE service provide with Carrier Grade NAT (CGNAT) and firewall	Unauthorized and malicious communications from untrusted network	Asset owner (Essential)
	Perimeter firewall	Unauthorized and malicious communications from untrusted network	Asset owner (Essential)
	Physical security (Refers to section Physical Installation)	Physical modification, manipulation, theft, removal, or destruction of asset	
Network Security	Network IDS/IPS	Network attacks from various sources such as port scanning, DDOS, etc.	Asset owner (Recommended)
	VPN	Man-in-the-middle attacks that allow hackers to intercept and manipulate network traffic (Threat ID #4)	
Endpoint Security	End point Firewall (firewalld)	Unauthorized and malicious communications from untrusted network (Threat ID #2 , Threat ID #5)	Provided by Moxa Arm-based Computer
	Brute-force attacks IPS (fail2ban)	Trial and error attack attempting to crack login credentials (Threat ID #3)	
	Automatic network Connection failover (Refers to MCM failover configuration)	Radio jamming attack (Threat ID #1)	
	Patch management	Vulnerabilities from outdated software could expose to security breach.	Asset owner / Moxa Arm-based Computer (Essential)
	Secure transmission protocol	Man-in-the-middle attacks that allow hackers to intercept and manipulate network traffic (Threat ID #4)	
	Audit processing failure response	Audit processing failure without appropriate response results in the attacker's activities can go unnoticed, and evidence of whether the attack led to a breach can be inconclusive (Threat ID #7)	
Application Security	IEC 62443-4-1 compliant secure design, implementation, validation, and defect management process	Potential vulnerabilities generated from the development and testing process that doesn't follow security best practices.	Provided by Moxa Arm-based Computer

Security Layer	Security Measures	Threat mitigated/handled	Responsibility
Data Security	Host Intrusion Detection System (AIDE)	Unexpected changes to important files that could potentially lead to security breach.	Provided by Moxa Arm-based Computer
	Access control and login policy including limit invalid login attempts, automatic session termination and login banner	Unauthorized operation to Moxa Arm-based computer that could lead to system confidentiality and integrity breach or availability attack.	
	Disk encryption	Access to confidential data in storage without authorization.	
	Secure boot	Tampering of bootloader, OS kernel and rootFS.	

Table 9.1 – Defense-in-Depth Strategy

*Essential: Security measure that must be taken by asset owner to ensure secure use of Moxa Arm-based computer *Recommended: Security measures that need to be taken by the asset owner if the threats apply.

Potential Threats and Corresponding Security Measures

Below is a list of potential security threats that can harm Moxa Arm-based computers and the corresponding security measures that need to be taken by the **asset owner** if the threats apply.

Threat ID	Threat mitigated/handled	Security Measures
1	Radio jamming attack resulting in Wi-Fi and cellular connection DOS	<ul style="list-style-type: none"> For Moxa Arm-based computer with both Wi-Fi and cellular interface, configure connection failover to use backup connection when primary connection is attacked by radio jamming Extend the perimeter of physical security to reduce the impact from radio jamming attack
2	Network data flow through ethernet, Wi-Fi, cellular interface could be potentially interrupted, crashed or stopped by DOS attack	<ul style="list-style-type: none"> Setup network monitoring tool to detect abnormal traffic Configure rate limiting to limit the network traffic
3	SSH server could be potentially interrupted, crashed or stopped by DOS attack	<ol style="list-style-type: none"> Following parameters are set in SSH server configuration file by Moxa as countermeasure. <ul style="list-style-type: none"> MaxSessions: set to 6 to protect a system from denial of service due to a large number of concurrent sessions MaxStartups: set to 6:30:60 to protect a system from denial of service due to a large number of pending authentication connection attempts Fail2ban is pre-installed and running in Moxa Arm-based computer to automatically ban malicious IP
4	Data flowing across ethernet may be sniffed by an attacker	<ol style="list-style-type: none"> Make sure secure protocol with encryption and authentication are used for data transmission (e.g., SSHv2, HTTPS) Install and use VPN for secure data transmission
5	DOS attack from untrusted NTP server when Moxa Arm-based computer attempt to synchronize time	If a public NTP server without NTS support is used, it is vulnerable to an NTP amplification attack in which the attacker could exploit public NTP servers to overwhelm Moxa Arm-based computer with UDP traffic; therefore, refers to Advanced Firewall Configuration (Rich Rules) > NTP Amplification Attack to mitigate it.
6	Data read from USB or SD card could be spoofed	<ol style="list-style-type: none"> Use sha256 or other checksums tools to check the integrity of the file before installing or transferring to device. If the file is Debian package (.deb), refers to "How to manually check for package's integrity" to validate. Scan the file with Clamav before installing or transferring it to the device Use OpenSSL to verify the signature of the file before installing or transferring to the device.
7	Insufficient auditing storage causes logs to rotate frequently	Store logs in external storage or use a centralized log management system to collect and store the logs from multiple devices. Refers to How to Set Up Centralized Logging on Linux with Rsyslog

Threat ID	Threat mitigated/handled	Security Measures
8	If the Ethernet connection between the NPort device and the Moxa computer crosses an internet boundary without proper security measures, data transmission is vulnerable to interception, tampering, or unauthorized access. This risk is heightened if the NPort 5000 series is used, as it does not support SSL-enabled RealTTY, leaving communication unencrypted.	For the NPort 6000 series, use SSL-enabled RealTTY drivers to encrypt communication and ensure secure data transfer. For the NPort 5000 series, implement a site-to-site VPN connection or a private network to encrypt data and protect it from interception, tampering, and unauthorized access.
9	If the Ethernet connection between the ioLogik and the Moxa computer crosses an internet boundary without adequate security measures, the data transmitted is at risk of being intercepted, tampered with, or accessed by unauthorized parties, potentially leading to data breaches or system compromises.	Implement a site-to-site VPN connection or a private network to encrypt the data and safeguard it against interception, tampering, and unauthorized access, ensuring secure communication between the ioLogik and the Moxa computer.
10	The NTP (Chrony) service may lack sufficient input validation mechanisms, potentially allowing malicious or malformed input to be processed. This vulnerability could be exploited to disrupt time synchronization, inject inaccurate timestamps, or compromise system operations relying on precise timing. Such risks may lead to degraded performance, incorrect logging, or cascading failures in dependent systems and applications.	Refer to Enhance DNS Security

Installation

Physical Installation

- Secure model of Moxa Arm-based computer MUST be used to ensure safe use. Refer to [Secure and Standard Model](#) for details of model difference.
- The secure model of Moxa Arm-based computer MUST be protected by physical security that can include CCTV surveillance, security guards, protective barriers, locks, access control, perimeter intrusion detection, etc. The proper form of physical security should apply depending on the environment and the physical attack risk level.
- Moxa Arm-based computer has anti-tamper labels on the enclosures. This allows the administrator to tell whether the device has been tampered with.
- Moxa Arm-based computer uses security screw on the enclosures as physical tamper resistance measure to increase the difficulty of probing the product internals in case of physical security breach.
- Moxa Arm-based computer MUST not be used to **control** the operation of mission-critical IACS component, where failure to maintain control of such device could result in threat to human, safety, environment or massive financial lost.

Environment Requirements

1. If a Moxa Arm-based computer connects to untrusted network (e.g., Internet) via Ethernet or Wi-Fi, it MUST NOT directly connect to it, which means a firewall must be set up between Ethernet and Wi-Fi connection from Moxa Arm-based computer and the untrusted network.
2. For security-critical applications, we strongly recommend using a private APN for cellular networks.

Access Control

1. The default user account **Moxa** of Linux belongs to the sudo group. Before deploying Moxa Arm-based computer after development, you must disable this default account and create new account(s) following the least privilege principle, granting only the necessary access right and permission for the intended operation.
2. Each account should be assigned the correct privileges. Moxa Industrial Linux uses Discretionary Access Control (DAC) based on Access Control Lists (ACLs) to manage permissions and privileges. Refers to [Permissions and Privileges Control](#) for details.
3. The default password policy requires the password to be at least 8 characters in length. We strongly recommend keeping the default setting, or you can reduce the password length by adding additional complexity rules to the password, such as special character or numeric character enforcement. Refers to instructions to configure the policy for [Linux](#) and [Bootloader](#), respectively.
4. Update user passwords on a timely manner. For administrator, we recommend refreshing password at least every 3 months.
5. [Bootloader configuration menu](#) comes with a single administrator account shared by all users. Asset owner MUST have access and identity records of the personnel who accessed the bootloader to ensure non-repudiation in case of security breach incidents.
6. Below is a list of all services in Moxa Arm-based computer uses to connect with external processes and components.

Service	Protocol	Interfaces	Owner (uid/gid)	Authorization Enforcement
SSH server	SSH	Ethernet, cellular, Wi-Fi	root/root	Yes
SFTP server	SSH	Ethernet, cellular, Wi-Fi	root/root	Yes
SCP server	SSH	Ethernet, cellular, Wi-Fi	root/root	Yes
Serial Getty service	RS-232	Serial console port	root/root	Yes
APT client	HTTPS	Ethernet, cellular, Wi-Fi	root/root	Yes
NTP client (NTS support)	TLS/SSL, NTP	Ethernet, cellular, Wi-Fi	root/root	Yes
Device Discovery	mDNS	Ethernet	Root/root	Yes

Security Configuration Check

The **Secure models** of Moxa's Arm-based computers are **secure-by-default** and comply with the **IEC 62443-4-2 Security Level 2 (SL2)** requirements.

With MIL4, both **Standard and Secure models** incorporate security mechanisms and configuration controls designed to support compliance with the cybersecurity requirements of the **EN 18031:1 EU RED**.

Although the Secure model is delivered with a hardened default configuration, and the Standard model provides configurable security features, security settings may be unintentionally modified during system customization or application deployment. Such changes may cause the system to deviate from the intended security posture or applicable compliance requirements.

Moxa Guardian is a security diagnosis tool that helps identify gaps between the current system configuration and the security requirements defined by **IEC 62443-4-2 SL2** (for Secure models), as well as MIL4 security hardening guidelines aligned with **EN 18031:1 EU RED**.

It is strongly recommended to run the security diagnosis before deploying the product to ensure that required security controls remain correctly configured.

For detailed instructions on using Moxa Guardian, refer to [Security Diagnosis Tool](#) section.

Network Service Exposure

This section describes the network services and port usage that may be present on the system, and provides guidance for verifying and controlling network exposure as part of the security configuration check.

To reduce the attack surface, only the network services required for the intended application should be enabled. All externally reachable services are subject to zone-based access control enforced by firewalld.

Refer to [Network Service Exposure and Port Usage](#) for the details of network services and the firewall policy.

Operation

Administrator

1. Disable default account

Use the `passwd` command to lock the default user account so that the **moxa** user cannot log in. Make sure to create a new account before disable the default account.

```
moxa@moxa-tbzkb1090923:~$ sudo passwd -l moxa
```

2. Change the bootloader default password

Press **Ctrl + Backspace or DEL** to enter the bootloader. If the MIL Secure model is used, log in using the default password (the device serial number). Select **(2) Admin Password to change the default password**. For more details on changing the password, see [Administrator Password](#).

3. Disabled interfaces that are not in use

The interfaces that are not in use should be deactivated. Please refer to [Disabled Unused Interface](#) for detailed instructions.

4. Periodically regenerate the SSH server key

Periodically regenerate the SSH server key in order to secure your system in case the key is compromised. Please refer to [Rekey SSH](#)

5. Trusted administrator

Make sure only trusted and reliable persons are registered in the sudo groups for root privilege.

6. Audit failure response

Refer to [Audit Failure Response Guideline](#) to protection of critical system functions in case of audit processing failure.

7. System integrity validation

- Frequently run system integrity check to protect your system against malware, viruses and detect unauthorized activities. Refers to [Intrusion Detection System](#) for the utility that come with Moxa Arm-based computer.
- We recommend you reset Moxa Arm-based computer to [factory default](#) upon receiving it to avoid the risk of potential software tampering before the computer reaches your hand.

8. Only use secure cryptographic

- Moxa Industrial Linux on Moxa Arm-based computer only uses secure cryptographic that are commonly accepted industry best practices and recommendations as defined in NIST SP 800-57.
- Moxa Industrial Linux installed OpenSSL by default but does not disable weak algorithms such as TLS 1.0/1.1 and SSLv3. It is recommended that your application deployed on Moxa Industrial Linux only uses secure algorithms defined in NIST SP 800-57. You can disable the weaker cryptographic algorithm in OpenSSL by setting CipherString = DEFAULT@SECLEVEL=[desired level] in /etc/ssl/openssl.cnf to a higher level. For details, refers to:
https://www.openssl.org/docs/man1.1.1/man3/SSL_CTX_set_security_level.html

9. Malicious code protection

- Downloading file from untrusted sources is not recommended. If you still want to do it, make sure to verify the file using following recommendation:
 - Use sha256 or stronger algorithms checksums tools to check the integrity of the file before installing or transferring to device.
 - If the file is Debian package (.deb), follow "[How to manually check for package's integrity](#)" for the instruction.
 - Use [OpenSSL](#) to verify the signature of the file before installing or transferring to the device.

Administrator and User

1. Periodically refresh password

Update user passwords on a timely manner. For administrator, we recommend refreshing password at least every 3 months.

2. Encrypt confidential file

Use GPG or openSSL to encrypt confidential file or directory with a password in Linux. You can reference [How To Encrypt And Decrypt Files With A Password](#) for quick instructions.

Maintenance

1. Perform Update Frequently

- Perform [software upgrades](#) frequently to enhance features, deploy security patches, or fix bugs.
- We recommend you enable [System Fallback Recovery](#) before performing critical update.

2. Perform Backup Frequently

Frequently backup of system on timely manner

3. Examine Audit Logs Frequently

Examine audit logs frequently to detect any anomalies.

4. Report Vulnerability to Moxa

To report vulnerabilities of Moxa products, please submit your findings on the following web page:
<https://www.moxa.com/en/support/product-support/security-advisory/report-a-vulnerability>.

Decommissioning

1. To avoid any sensitive information such as your account password or certificate from being disclosed, always use the `mx-system-mgmt default decommission` command to reset the computer to factory default and further wipe out all user data, including logs, in an unrecoverable manner before removing the Moxa Arm-based computer from.

You must use sudo or run the command with the root permission.

```
moxa@moxa-tbzkb1090923:/# sudo mx-system-mgmt default decommission
```

The decommissioning process will do the following actions:

- a. Overwrite the system partition 4 times with `shred` so that all user files will be deleted and cannot be recovered.
- b. Overwrite the log partition 4 times with `shred` so that all log files will be deleted and cannot be recovered.
- c. Trigger the bootloader decommissioning function, so all configurations and log messages in the bootloader are also deleted and cannot be recovered.

2. If asset owner key or sensitive data is stored in the TPM, switch to bootloader [Developer Mode](#) and then perform [Clear TPM](#) action will clear all data stored in TPM.

10. Customization and Programming

MIL1 (Debian 9) to MIL4 (Debian 13) Migration

Moxa Arm-based computers with MIL1 (Debian 9) does not support direct upgrade to MIL4 (Debian 13). If you have such request, contact your regional sales representative.

If you are migrating an application previously developed on MIL1 to MIL4 please reference the below table for the major changes.

Category	Description	MIL1 (Debian 9)	MIL4 (Debian 13)
Password rule	Password change enforced upon first log-in	Starting from MIL1.4	✓
	Password complexity enforcement	n/a	At least 8 characters in length Password dictionary check
Backup & Restore utilities	Reinstall a system image	Via bootloader menu	Via bootloader menu
	Create a backup & restore	n/a	Moxa System Manager (MSM) Use mx-system-mgmt
	Create a snapshot & restore	n/a	
	Automatic system fallback recovery	n/a	
	Reset to factory default	Use mx-set-def	
Network connection utilities	Default LAN (ethernet) port configuration	LAN1(static IP):192.168.3.127 LAN2(static IP):192.168.4.127	<ul style="list-style-type: none">LAN1: Assigned by DHCP server. Link-local IP addresses will be assigned when DHCP server is not availableLAN2(static IP):192.168.4.127
	Cellular connection utility	Use cell_mgmt	Use mx-connection-mgmt Refers to Moxa Connection Manager (MCM) with additional features added below: <ul style="list-style-type: none">GUI to configure and manage networkConnection keep-aliveConnection failover/fallbackCellular, Wi-Fi and ethernet managementDHCP serverData usage monitoringIPv6 supportCellular connection diagnosisCellular modem firmware upgradeC API for network and connection status inquiry
	Wi-Fi connection utility	Use wifi_mgmt	
I/O and Interface Management utilities	Serial port mode change (RS-232, RS-422, RS-485 2-wire, and RS-485 4-wire)	Use mx-uart-ctl	Use mx-interface-mgmt Refers to serial port in Moxa Computer Interface Manager (MCIM) section

Category	Description	MIL1 (Debian 9)	MIL4 (Debian 13)
Hardware Control	Disabled unused port <ul style="list-style-type: none">• Serial port• Serial console• CAN port• Ethernet port• External storage (e.g., USB, SD) Create LUKS encrypted storage (e.g., USB, SD)	n/a	
	Module control including power control, module detection, initialize setting, and SIM slot switching	Use mx-module-ctl or cell_mgmt for cellular module control	
	Buzzer control	n/a	
	LED control	Use mx-led-ctl	
	Digital I/O control	Use moxa-dio-control	
	Mount a SD/USB storage device	Use moxa-auto-mountd.service	
	Push button control	n/a	
Other Configuration	Check product serial number	Use fw_printenv serialnumber	Use mx-interface-mgmt deviceinfo
	Check system image version	Use kversion or mx-ver	Use mx-ver
	APT repository source list	All repository in /etc/apt/sources.list Moxa repository in /etc/apt/sources.list.d/moxa.list	3rd party repository in /etc/apt/sources.list Moxa repository in /etc/apt/sources.list.d/moxa.list
API and libraries	Moxa Platform Libraries	✓	API and libraries not available. Use mx-interface-mgmt Refers to Moxa Computer Interface Manager (MCIM)

MIL3 (Debian 11) to MIL4 (Debian 13) Migration

Category	Sub-Category	MIL3 (Debian 11)	MIL4 (Debian 13)	Migration Impact Notes
Networking	Predictable Interface Naming	eth0 / eth1 (legacy naming)	end0 / end1 (predictable, system-derived naming)	Any scripts, firewall rules, services, or monitoring tools referencing eth0 must be updated to endX.
	LAN Default Management	LAN interfaces controlled by MCM	LAN interfaces controlled by Network Manager by default LAN configuration is default read from /etc/network/interfaces	Users relying on MCM for static IP / DHCP setup must configure MCM to manage LAN interfaces
	WAN Failover Behavior	Backup WAN stays disconnected by default	Backup WAN stays connected and periodically ping target (configurable)	Improves failover speed; customers should check data cost and configure ping target/frequency to avoid unexpected traffic.
	Cellular Signal Indicator	5-level scale	4-level scale (None/Very Poor/Poor/Fair/Good)	UI and API behavior changes may require dashboard adjustment; no functional impact.

Category	Sub-Category	MIL3 (Debian 11)	MIL4 (Debian 13)	Migration Impact Notes
	Firewall Framework	nftables enabled by default	firewalld enabled, nftables installed but disabled	Users with custom nft rules must convert rule sets or manually disable firewalld and re-enable nftables.
	Intrusion Detection	Zeek installed by default	Suricata installed by default	Configuration and log parsing tools for Zeek must be migrated to Suricata equivalents.
	WiFi Module	SparkLAN has no plan to provide a Linux kernel 6.x driver for the UC-2222A Wi-Fi accessory WP-MOD-W-SparkLAN-Wi-Fi 5 (SparkLAN WPEQ-160ACN). As a result, this Wi-Fi module is not supported on MIL4.		Note : For deployments requiring WP-MOD-W-SparkLAN-Wi-Fi 5 support, MIL3 (kernel 5.x) remains a supported option on UC-2222A.
System & OS Behavior	Moxa System Manager (MSM)	SSH server key is included in the backup image	SSH server key is excluded from backup to ensure each Moxa device maintains a unique SSH identity	Restored systems will keep the existing SSH server key
	Boot Manager	Separate boot management tool for x86 and ARM platform moxa-bootloader-manager moxa-bios-manager	Unified tool named moxa-boot-manager with improved usability	Tool commands changed; any automation relying on old package names must be updated.
	MIL Version Numbering	2-digit format (x.y) For example : UC-3434A-T-LTE-WiFi MIL3 version 1.0	3-digit format (x.y.z) For example : UC-3434A-T-LTE-WiFi MIL4 version 1.0.0	Version tracking, validation tools, and test automation should support the new format.
	APT Sources Format	Traditional /etc/apt/sources.list	Uses DEB822-style source files under /etc/apt/sources.list.d/ Example files: <ul style="list-style-type: none">debian.sources – Debian official repositoriesmoxa.sources – Moxa-specific repository	Do not add new repos to /etc/apt/sources.list Add .sources entries in /etc/apt/sources.list.d/
	Default Utility Package	wget available	Replaced by wcurl	Scripts using wget must be updated to use wcurl, or wget must be installed manually.
Hardware Interface	GPIO Control API	sysfs export (/sys/class/gpio)	Deprecated > must use libgpiod	All GPIO access scripts must be rewritten using gpiod toolset or C/Python bindings.
	GPIO Base Index	When migrating from MIL3 (Debian 11) to MIL4 (Debian 13), users may observe that GPIO numeric IDs differ on the same hardware platform. This change is expected and results from updates in the Linux kernel and GPIO subsystem, including driver probe order and the transition toward the modern GPIO character device framework.		Scripts or applications that rely on legacy global GPIO numbers (for example, /sys/class/gpio/gpioXX) may therefore require adjustment after upgrading to MIL4. Best Practice Use GPIO labels or line names for identification.

Docker Version Compatibility Notice (MIL4)

MIL4 uses a customized **OverlayFS-based system design** to support system integrity and update mechanisms.

Starting from **Docker Engine v29**, Docker enables the **containerd image store and containerd snapshotter** by default on fresh installations, which is not compatible with the current MIL4 OverlayFS design.

Temporary Recommendation

To ensure system stability, **Moxa recommends using Docker Engine v28 or earlier on MIL4 systems.**

Please do not install or upgrade to **Docker Engine v29 or later** on MIL4 at this time.

Resolution Plan

Moxa is actively working on a compatibility patch to address this limitation.

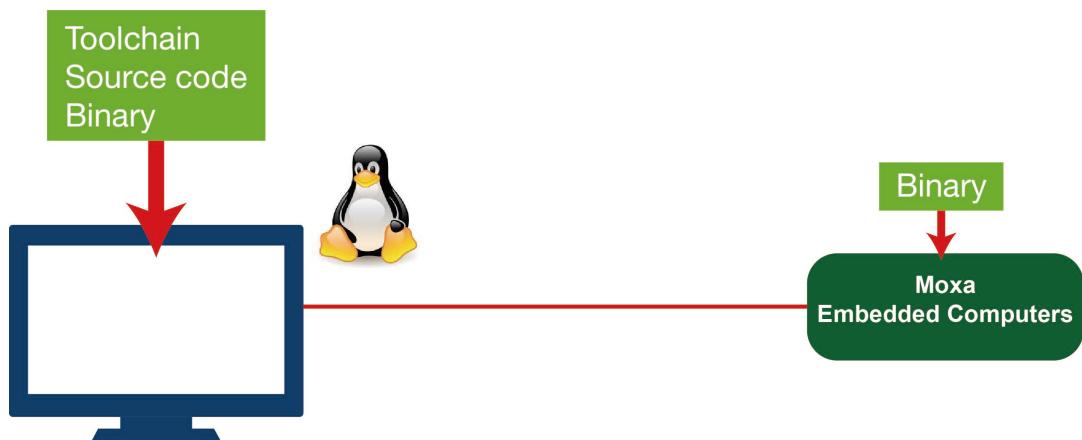
The solution is planned to be delivered in the next MIL4 update. Updated guidance will be provided once available.

Building an Application

Introduction

Moxa's Arm-based computers support both native and cross-compiling of code. Native compiling is more straightforward since all the coding and compiling can be done directly on the device. However, Arm architecture is less powerful and hence the compiling speed is slower. To overcome this, you can cross compile your code on a Linux machine using a toolchain; the compiling speed is much faster.

Native Compilation


Follow these steps to update the package menu:

1. Make sure a network connection is available.
2. Use `apt update` to update the Debian package list.

```
moxa@Moxa-tbzkb1090923:~$ sudo apt update
```
3. Install the native compiler and necessary packages.

```
moxa@Moxa-tbzkb1090923:~$ sudo apt install gcc build-essential flex bison automake
```

Cross Compilation

Moxa Industrial Linux (MIL) in Moxa's Arm-based computers is based on Debian. So, we recommend setting up a Debian environment on the host device to ensure best compatibility during cross compilation.

The toolchain will need about 300 MB of hard disk space on your PC.

To cross compile your code, do the following:

1. Set up a Debian 13 environment using a VM or Docker.
2. Download latest version of moxa-archive-keyring from Moxa official to your device.
<https://debian.moxa.com/#mil4/pool/main/m/moxa-archive-keyring/>
3. Install moxa-archive-keyring package (assume the latest version is 2025.08+deb13)

```
user@Linux:~$ sudo dpkg -i moxa-archive-keyring_2025.08+deb13_all.deb
```
4. Open moxa.sources in the vi editor.

```
user@Linux:~$ sudo vi /etc/apt/sources.list.d/moxa.sources
```

Add the following lines to **moxa.sources**:

```
Types: deb
URIs: https://debian.moxa.com/mil4/
Suites: trixie
Components: main
Signed-By: /etc/apt/trusted.gpg.d/linux-apt.gpg
```

5. Update the apt information.

```
user@Linux:~$ apt update
```
6. Download the toolchain file from apt server (all Moxa UC series computers use the official Debian toolchain).
For UC computer with **arm64** architecture

```
user@Linux:~$ apt install crossbuild-essential-arm64
```
7. Install **dev** or **lib** packages depending on whether Debian or Moxa packages are applicable for the procedure.
Example for installing an armhf Debian official package:

```
user@Linux:~$ apt install libssl-dev:armhf
```

You can now start compiling programs using the toolchain.

NOTE

For all available libraries and headers offered by Debian, visit: <https://packages.debian.org/index>.

Example Program—hello

In this section, we use the standard "hello" example program to illustrate how to develop a program for Moxa computers. All example codes can be downloaded from Moxa's website. The "hello" example code is available in the **hello** folder; hello/hello.c:

```
#include <stdio.h>

int main(int argc, char *argv[])
{
    printf("Hello World\n");
    return 0;
}
```

Native Compilation

1. Compile the hello.c code.

```
moxa@Moxa-tbzkb1090923:~$ gcc -o hello hello.c
moxa@Moxa-tbzkb1090923:~$ strip -s hello
```

or

use the Makefile as follows:

```
moxa@Moxa-tbzb1090923:~$ make
```

2. Run the program.

```
moxa@Moxa-tbzb1090923:~$ ./hello
Hello World
```

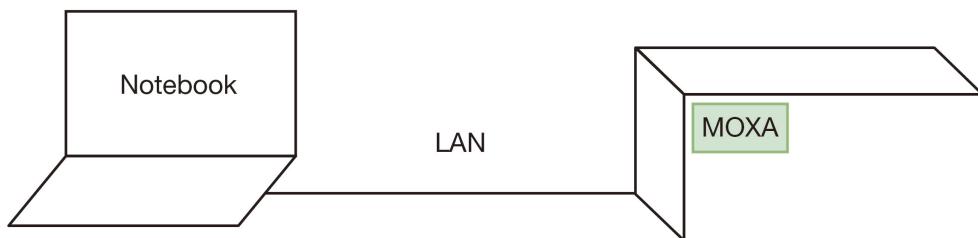
Cross Compiling

1. Compile the hello.c code.

```
user@Linux:~$ aarch64-linux-gnu-gcc -o hello \
hello.c
user@Linux:~$ aarch64-linux-gnu-strip -s hello
```

or

use the Makefile as follows:


```
user@Linux:~$ make CC=aarch64-linux-gnu-gcc \
STRIP=aarch64-linux-gnu-strip
```

2. Copy the program to a Moxa computer:

For example, if the IP address of your device used for cross compiling the code is "192.168.3.100" and the IP address of the Moxa computer is "192.168.3.127", use the following command:

192.168.3.100

192.168.3.127


```
user@Linux:~$ scp hello moxa@192.168.3.127:~
```

3. Run the hello.c program on the Moxa computer.

```
moxa@Moxa-tbzb1090923:~$ ./hello
Hello World
```

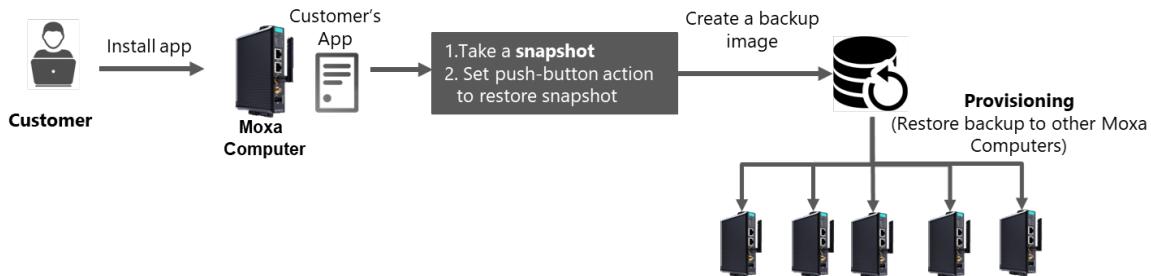
Example Makefile

You can create a Makefile for the "hello" example program using the following code. By default, the Makefile is set for native compiling.

"hello/Makefile":

```
CC:=gcc
STRIP:=strip

all:
    $(CC) -o hello hello.c
    $(STRIP) -s hello


.PHONY: clean
clean:
    rm -f hello
```

To set the hello.c program for cross compilation, modify the toolchain settings as follows:

```
CC:=arm-linux-gnueabihf-gcc
STRIP:=arm-linux-gnueabihf-strip
```

Creating a Customized Backup for Batch Provisioning

Introduction

Creating and Using System Snapshots and Backups

1. Configure your Moxa Arm-based computer and install applications.
2. Create a [Snapshot](#).
3. Configure a push-button on the computer to restore a snapshot.
See [Configure the Button Action](#).
4. Create a [Backup Image](#) and [configure file exclusion list](#) to exclude device-unique information, such as cryptographic keys.
 - The backup will also include the snapshot taken earlier.
 - The backup image can be used via the [backup restore](#) command to provision Moxa computers whose model name is the same as the computer used to create the backup image.

Alternatively, you can use the Moxa Swift utility to mass-provision multiple Moxa computers with the same model name using the backup image. The utility can be downloaded from the Resources tab of product page of any UC Series product that supports Moxa Industrial Linux 4.

For example, [UC-3400A's product page](#)

NAME	TYPE	CHECKSUM	VERSION	OPERATING SYSTEM	RELEASE DATE
Moxa Swift Utility (batch provisioning tool for MIL 3.0 to 3.3) 95.3 MB	Utility	SHA-512	v1.0.2	- Windows 10 - Windows 11	Aug 19, 2025 Release notes

Bluetooth Stack Support and HCI Configuration

MIL4 includes **Bluetooth protocol stack support only**.

Bluetooth hardware support, profiles (such as A2DP, HID, or GATT), and application-level functionality are **not enabled by default** and may require additional hardware support, kernel configuration, and user-developed applications.

This section describes how to **initialize and configure the Bluetooth Host Controller Interface (HCI)** at the system level.

Configuring Bluetooth HCI over UART

Before establishing a Bluetooth connection, you must configure Bluetooth HCI UART Transport with hardware flow control and set the baudrate at 115200.

To configure Bluetooth HCI UART Transport, do the following:

1. Attach the Bluetooth interface.

Run the following command to attach the Bluetooth interface `/dev/ttys3` to `hci0` with a baud rate of **115200** and enable hardware flow control.

The `hci0` interface represents the first Host Controller Interface (HCI) device managed by the Linux Bluetooth stack.

If multiple Bluetooth adapters are connected, they appear as `hci1`, `hci2`, and so on.

```
root@moxa-imoxa1234567:/home/moxa# hciattach /dev/ttys3 any 115200 flow
[ 27.238266] Bluetooth: Core ver 2.22
[ 27.238454] NET: Registered protocol family 31
[ 27.238459] Bluetooth: HCI device and connection manager initialized
[ 27.238484] Bluetooth: HCI socket layer initialized
[ 27.238492] Bluetooth: L2CAP socket layer initialized
[ 27.238508] Bluetooth: SCO socket layer initialized
[ 27.269348] Bluetooth: HCI UART driver ver 2.3
Device setup complete
[ 27.269372] Bluetooth: HCI UART protocol H4 registered
root@moxa-imoxa1234567:/home/moxa# [ 27.269479] Bluetooth: HCI UART protocol LL registered
[ 27.269782] Bluetooth: HCI UART protocol Broadcom registered
[ 27.269815] Bluetooth: HCI UART protocol QCA registered
[ 27.450601] Bluetooth: BNEP (Ethernet Emulation) ver 1.3
[ 27.450625] Bluetooth: BNEP filters: protocol multicast
[ 27.450649] Bluetooth: BNEP socket layer initialized
[ 27.474781] NET: Registered protocol family 38
```

2. Bring up the Bluetooth device.

Once the interface is attached, bring up the Bluetooth device using `# hciconfig hci0 up`.

```
root@moxa-imoxa1234567:/home/moxa# hciconfig hci0 up
root@moxa-imoxa1234567:/home/moxa#
```

Using bluetoothctl to manage Bluetooth interface

The **bluetoothctl** utility provides an interactive command-line interface for managing Bluetooth devices. Use it to configure, control, and test Bluetooth connections directly from the terminal.

1. Open a terminal and run the **# bluetoothctl** to start the Bluetooth control utility.
2. Display controller information by using **# show**. This command displays details about the Bluetooth adapter, such as its name, MAC address, supported profiles, and advertising capabilities.

```
[DeviceB]# show
Controller 6C:1D:EB:98:72:08 (public)
  Name: moxa-imoxa34000a1
  Alias: moxa-imoxa34000a1
  Class: 0x002c0000
  Powered: yes
  Discoverable: no
  DiscoverableTimeout: 0x000000b4
  Pairable: yes
  UUID: A/V Remote Control      (0000110e-0000-1000-8000-00805f9b34fb)
  UUID: Audio Source            (0000110a-0000-1000-8000-00805f9b34fb)
  UUID: PnP Information         (00001200-0000-1000-8000-00805f9b34fb)
  UUID: Audio Sink              (0000110b-0000-1000-8000-00805f9b34fb)
  UUID: Headset                 (00001108-0000-1000-8000-00805f9b34fb)
  UUID: A/V Remote Control Target (0000110c-0000-1000-8000-00805f9b34fb)
  UUID: Generic Access Profile (00001800-0000-1000-8000-00805f9b34fb)
  UUID: Generic Attribute Profile (00001801-0000-1000-8000-00805f9b34fb)
  UUID: Device Information      (0000180a-0000-1000-8000-00805f9b34fb)
  UUID: Headset AG              (00001112-0000-1000-8000-00805f9b34fb)
  Modalias: usb:v1D6Bp0246d0537
  Discovering: no
  Roles: central
  Roles: peripheral
Advertising Features:
  ActiveInstances: 0x00 (0)
  SupportedInstances: 0x06 (6)
  SupportedIncludes: tx-power
  SupportedIncludes: appearance
  SupportedIncludes: local-name
  SupportedSecondaryChannels: 1M
  SupportedSecondaryChannels: 2M
  SupportedSecondaryChannels: Coded
[DeviceB]#
```

3. Use the **list** command to see available Bluetooth Controllers.
4. If the bluetooth interface is not already on, use the **power on** command to enable it.
5. Make your device discoverable with the command **discoverable on**.
6. Begin scanning for nearby Bluetooth devices using the command **scan on**. You can also use **hcitool scan** for this step.

```
root@moxa-imoxa0000050:/home/moxa# bluetoothctl
Agent registered
[bluetooth]# list
Controller 18:62:E4:11:47:83 moxa-imoxa0000050 [default]
[bluetooth]# power on
Changing power on succeeded
[bluetooth]# scan on
Discovery started
[CHG] Controller 18:62:E4:11:47:83 Discovering: yes
[NEW] Device 58:91:60:11:4B:F3 58-91-60-11-4B-F3
[NEW] Device 5C:9C:BA:B0:1B:BE 5C-9C-BA-B0-1B-BE
[NEW] Device 3C:61:23:ED:74:EB 3C-61-23-ED-74-EB
[NEW] Device CE:2B:93:CB:F5:2F CE-2B-93-CB-F5-2F
[NEW] Device 48:13:38:6B:6F:4B 48-13-38-6B-6F-4B
[NEW] Device D0:D2:B0:8C:4A:F5 D0-D2-B0-8C-4A-F5
[NEW] Device 43:02:1D:00:23:65 43-02-1D-00-23-65
[NEW] Device 67:D5:52:FF:24:0D 67-D5-52-FF-24-0D
[CHG] Device D0:D2:B0:8C:4A:F5 RSSI: -73
[CHG] Device 5C:9C:BA:B0:1B:BE RSSI: -89
[NEW] Device C8:6B:BA:55:AA:FF C8-6B-BA-55-AA-FF
root@moxa-imoxa0000050:/home/moxa# hcitool scan
Scanning ...
        D4:C8:B0:4A:06:E8      n/a
        40:9C:28:E5:05:B5      DSAP
```

7. Identify the MAC address of the Bluetooth device you want to connect to from the scan results.

8. Stop scanning with the command **scan off**.

```
[bluetooth]# scan off
Discovery stopped
[CHG] Controller 18:62:E4:11:47:83 Discovering: no
[CHG] Device C8:6B:BA:55:AA:FF RSSI is nil
[CHG] Device 67:D5:52:FF:24:0D TxPower is nil
[CHG] Device 67:D5:52:FF:24:0D RSSI is nil
[CHG] Device 43:02:1D:00:23:65 TxPower is nil
[CHG] Device 43:02:1D:00:23:65 RSSI is nil
[CHG] Device D0:D2:B0:8C:4A:F5 TxPower is nil
[CHG] Device D0:D2:B0:8C:4A:F5 RSSI is nil
[CHG] Device 48:13:38:6B:6F:4B TxPower is nil
[CHG] Device 48:13:38:6B:6F:4B RSSI is nil
[CHG] Device CE:2B:93:CB:F5:2F RSSI is nil
[CHG] Device 3C:61:23:ED:74:EB RSSI is nil
[CHG] Device 5C:9C:BA:B0:1B:BE TxPower is nil
[CHG] Device 5C:9C:BA:B0:1B:BE RSSI is nil
[CHG] Device 58:91:60:11:4B:F3 TxPower is nil
[CHG] Device 58:91:60:11:4B:F3 RSSI is nil
```

9. Start an agent using the command **agent on**.

10. Trust, Pair, and Connect:

- Trust the device using the command **trust MACADDRESS**.
- Pair with the device using the command **pair MACADDRESS**.

```
[bluetooth]# trust 40:9C:28:E5:05:B5
[CHG] Device 40:9C:28:E5:05:B5 Trusted: yes
Changing 40:9C:28:E5:05:B5 trust succeeded
[bluetooth]# pair 40:9C:28:E5:05:B5
Attempting to pair with 40:9C:28:E5:05:B5
[CHG] Device 40:9C:28:E5:05:B5 Connected: yes
Request confirmation
[agent] Confirm passkey 710172 (yes/no): yes
[CHG] Device 40:9C:28:E5:05:B5 Modalias: bluetooth:v004Cp710Ebd0F50
[CHG] Device 40:9C:28:E5:05:B5 UUIDs: 00000000-deca-fade-deafdecacafe
[CHG] Device 40:9C:28:E5:05:B5 UUIDs: 00001000-0000-1000-8000-00805f9b34fb
[CHG] Device 40:9C:28:E5:05:B5 UUIDs: 0000110a-0000-1000-8000-00805f9b34fb
[CHG] Device 40:9C:28:E5:05:B5 UUIDs: 0000110c-0000-1000-8000-00805f9b34fb
[CHG] Device 40:9C:28:E5:05:B5 UUIDs: 0000110e-0000-1000-8000-00805f9b34fb
[CHG] Device 40:9C:28:E5:05:B5 UUIDs: 00001116-0000-1000-8000-00805f9b34fb
[CHG] Device 40:9C:28:E5:05:B5 UUIDs: 0000111f-0000-1000-8000-00805f9b34fb
[CHG] Device 40:9C:28:E5:05:B5 UUIDs: 0000112f-0000-1000-8000-00805f9b34fb
[CHG] Device 40:9C:28:E5:05:B5 UUIDs: 00001132-0000-1000-8000-00805f9b34fb
[CHG] Device 40:9C:28:E5:05:B5 UUIDs: 00001200-0000-1000-8000-00805f9b34fb
[CHG] Device 40:9C:28:E5:05:B5 UUIDs: 00001801-0000-1000-8000-00805f9b34fb
[CHG] Device 40:9C:28:E5:05:B5 UUIDs: 02030302-1d19-415f-86f2-22a2106a0a77
[CHG] Device 40:9C:28:E5:05:B5 ServicesResolved: yes
[CHG] Device 40:9C:28:E5:05:B5 Paired: yes
Pairing successful
[CHG] Device 40:9C:28:E5:05:B5 ServicesResolved: no
[CHG] Device 40:9C:28:E5:05:B5 Connected: no
```

- Connect to the device using the command **connect MACADDRESS** or initiate the connection from your phone.

```
[CHG] Device 40:9C:28:E5:05:B5 Connected: yes
[DSAP]#
```

11. Use **info MACADDRESS** to display information about the connected device. It will show paired device profiles such as Audio Source Profile.

```
root@moxa-imoxa000050:/home/moxa# bluetoothctl info 40:9C:28:E5:05:B5
Device 40:9C:28:E5:05:B5 (public)
  Name: DSAP
  Alias: DSAP
  Class: 0x007a020c
  Icon: phone
  Paired: yes
  Trusted: yes
  Blocked: no
  Connected: yes
  LegacyPairing: no
  UUID: Vendor specific      (00000000-deca-fade-deca-deafdecacafe)
  UUID: Service Discovery Serve.. (00001000-0000-1000-8000-00805f9b34fb)
  UUID: Audio Source          (0000110a-0000-1000-8000-00805f9b34fb)
  UUID: A/V Remote Control Target (0000110c-0000-1000-8000-00805f9b34fb)
  UUID: A/V Remote Control      (0000110e-0000-1000-8000-00805f9b34fb)
  UUID: NAP                   (00001116-0000-1000-8000-00805f9b34fb)
  UUID: Handsfree Audio Gateway (0000111f-0000-1000-8000-00805f9b34fb)
  UUID: Phonebook Access Server (0000112f-0000-1000-8000-00805f9b34fb)
  UUID: Message Access Server  (00001132-0000-1000-8000-00805f9b34fb)
  UUID: PnP Information        (00001200-0000-1000-8000-00805f9b34fb)
  UUID: Generic Attribute Profile (00001801-0000-1000-8000-00805f9b34fb)
  UUID: Vendor specific        (02030302-1d19-415f-86f2-22a2106a0a77)
  Modalias: bluetooth:v004Cp710Ed0F50
```

Using hcitool for sending HCI commands

1. You can use **hcitool cmd** to send HCI commands.
2. The command format and example can be found in the provided link: https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_sdk/1.60.00.29_new/exports/docs/ble5stack/vendor_specific_guide/BLE_Vendor_Specific_HCI_Guide/hci_interface.html
3. For example, to reset the module, use the command **0x3 0x3**.

```
root@moxa-imoxa000050:/home/moxa# hcitool cmd 0x03 0x03
< HCI Command: ogf 0x03, ocf 0x0003, plen 0
> HCI Event: 0x05 plen 4
  00 01 00 16
```

Troubleshooting

- If the **bluetoothctl connect** command fails, ensure that both devices have a compatible profile.
- Error messages such as **connect failed for MACADDRESS: Protocol not available2dp-sink profile** or **connect failed for MACADDRESS: Protocol not available2dp-source profile** indicate a missing profile.

```
root@moxa-imoxa34000al:/home/moxa# systemctl status bluetooth
● bluetooth.service - Bluetooth service
  Loaded: loaded (/lib/systemd/system/bluetooth.service; enabled; vendor preset: enabled)
  Active: active (running) since Wed 2024-10-16 23:12:40 GMT; 37s ago
    Docs: man:bluetoothd(8)
  Main PID: 3420 (bluetoothd)
    Status: "Running"
      Tasks: 1 (limit: 4011)
     Memory: 752.0K
       CPU: 83ms
      CGroup: /system.slice/bluetooth.service
              └─3420 /usr/libexec/bluetooth/bluetoothd

Oct 16 23:12:40 moxa-imoxa34000al systemd[1]: Starting Bluetooth service...
Oct 16 23:12:40 moxa-imoxa34000al bluetoothd[3420]: Bluetooth daemon 5.55
Oct 16 23:12:40 moxa-imoxa34000al systemd[1]: Started Bluetooth service.
Oct 16 23:12:40 moxa-imoxa34000al bluetoothd[3420]: Starting SDP server
Oct 16 23:12:40 moxa-imoxa34000al bluetoothd[3420]: Bluetooth management interface 1.18 initialized
Oct 16 23:12:40 moxa-imoxa34000al bluetoothd[3420]: profiles/sap/server.c:sap_server_register() Sap driver initialization failed.
Oct 16 23:12:40 moxa-imoxa34000al bluetoothd[3420]: sap-server: Operation not permitted (1)
Oct 16 23:13:12 moxa-imoxa34000al bluetoothd[3420]: src/service.c:bt_service_connect() a2dp-sink profile connect failed for 20:BA:36:53:7B:AC: Protocol not available
Oct 16 23:13:12 moxa-imoxa34000al bluetoothd[3420]: src/service.c:bt_service_connect() a2dp-source profile connect failed for 20:BA:36:53:7B:AC: Protocol not available
```

- Install **pulseaudio-utils** and **pulseaudio-module-bluetooth** to resolve the issue. Use the command **apt install pulseaudio-utils pulseaudio-module-bluetooth**.