
 

IA260/IA261/IA262/EM-2260 Linux  
User’s Manual 

First Edition, January 2009 

www.moxa.com/product 

 

© 2009 Moxa Inc. All rights reserved. 
Reproduction without permission is prohibited. 

 

http://www.moxa.com/product


 

IA260/IA261/IA262/EM-2260 Linux  
User’s Manual 

The software described in this manual is furnished under a license agreement and may be used only in 
accordance with the terms of that agreement. 

 
Copyright Notice 

 
Copyright © 2009 Moxa Inc. 

All rights reserved. 
Reproduction without permission is prohibited. 

 
Trademarks 

 
MOXA is a registered trademark of Moxa Inc. 

All other trademarks or registered marks in this manual belong to their respective manufacturers. 
 

Disclaimer 
 
Information in this document is subject to change without notice and does not represent a commitment on the 
part of Moxa. 

Moxa provides this document “as is,” without warranty of any kind, either expressed or implied, including, but 
not limited to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this 
manual, or to the products and/or the programs described in this manual, at any time. 

Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no 
responsibility for its use, or for any infringements on the rights of third parties that may result from its use. 

This product might include unintentional technical or typographical errors. Changes are periodically made to the 
information herein to correct such errors, and these changes are incorporated into new editions of the 
publication. 

Technical Support Contact Information 
www.moxa.com/support 

 
Moxa Americas: 
Toll-free: 1-888-669-2872 
Tel: +1-714-528-6777 
Fax: +1-714-528-6778 

Moxa China (Shanghai office): 
Toll-free: 800-820-5036 
Tel: +86-21-5258-9955 
Fax: +86-10-6872-3958 

Moxa Europe: 
Tel: +49-89-3 70 03 99-0 
Fax: +49-89-3 70 03 99-99 

Moxa Asia-Pacific: 
Tel: +886-2-8919-1230 
Fax: +886-2-8919-1231 

 

http://www.moxa.com/support


 

Table of Contents 
Chapter 1 Introduction ..................................................................................................1-1 

Overview.................................................................................................................................. 1-2 
Software Architecture .............................................................................................................. 1-2 

Journaling Flash File System (JFFS2)........................................................................ 1-3 
Software Package ....................................................................................................... 1-4 

Chapter 2 Getting Started .............................................................................................2-1 
Powering on the IA260/IA261/IA262/EM-2260 ..................................................................... 2-2 
Connecting the IA260/IA261/IA262/EM-2260 to a PC .......................................................... 2-2 

Debug Port.................................................................................................................. 2-2 
Telnet Console............................................................................................................ 2-3 
SSH Console .............................................................................................................. 2-4 
VGA Console ............................................................................................................. 2-6 

Configuring the Ethernet Interface .......................................................................................... 2-6 
Modifying Network Settings ...................................................................................... 2-6 
Modifying Network Settings by Command................................................................ 2-7 

CF Socket for Storage Expansion ............................................................................................ 2-7 
Test Program—Developing Hello.c ......................................................................................... 2-7 

Installing the Tool Chain (Linux)............................................................................... 2-8 
Checking the Flash Memory Space ............................................................................ 2-8 
Compiling Hello.c ...................................................................................................... 2-9 
Uploading and Running the “Hello” Program............................................................ 2-9 

Chapter 3 Managing Embedded Linux ........................................................................3-1 
System Version Information..................................................................................................... 3-2 

Upgrading the Firmware............................................................................................. 3-2 
Loading Factory Defaults ........................................................................................... 3-5 

Enabling and Disabling Daemons............................................................................................ 3-5 
Setting the Run-Level .............................................................................................................. 3-7 
Adjusting the System Time...................................................................................................... 3-8 

Setting the Time Manually ......................................................................................... 3-8 
NTP Client.................................................................................................................. 3-9 
Updating the Time Automatically .............................................................................. 3-9 

Cron—Daemon to Execute Scheduled Commands ............................................................... 3-10 

Chapter 4 Managing Communications ........................................................................4-1 
Telnet / FTP ............................................................................................................................. 4-2 
DNS ......................................................................................................................................... 4-2 
Web Service—Apache ............................................................................................................. 4-3 
Install PHP for Apache Web Server ......................................................................................... 4-5 
IPTABLES ............................................................................................................................... 4-7 
NAT.........................................................................................................................................4-11 

NAT Example .......................................................................................................... 4-12 
Enabling NAT at Bootup.......................................................................................... 4-12 

Dial-up Service—PPP............................................................................................................ 4-13 
PPPoE .................................................................................................................................... 4-16 
NFS (Network File System)................................................................................................... 4-18 

Setting up the IA260/IA261/IA262/EM-2260 as an NFS Client.............................. 4-18 
Mail........................................................................................................................................ 4-19 



 

SNMP .................................................................................................................................... 4-19 
OpenVPN............................................................................................................................... 4-19 

Chapter 5 Development Tool Chains ...........................................................................5-1 
Linux Tool Chain ..................................................................................................................... 5-2 

Steps for Installing the Linux Tool Chain .................................................................. 5-2 
Compilation for Applications ..................................................................................... 5-2 
On-Line Debugging with GDB .................................................................................. 5-3 

Chapter 6 Programmer’s Guide....................................................................................6-1 
Flash Memory Map.................................................................................................................. 6-2 
Device API............................................................................................................................... 6-2 
RTC (Real Time Clock) ........................................................................................................... 6-2 
Buzzer ...................................................................................................................................... 6-3 
UART....................................................................................................................................... 6-3 
MoxaCAN programming Guide .............................................................................................. 6-5 

Introduction ................................................................................................................ 6-5 
Programming Guide ................................................................................................... 6-5 

Digital I/O................................................................................................................................ 6-8 

Appendix A System Commands..................................................................................... A-1 
Linux normal command utility collection............................................................................... A-1 

File manager.............................................................................................................. A-1 
Editor......................................................................................................................... A-1 
Network..................................................................................................................... A-1 
Process....................................................................................................................... A-2 
Other.......................................................................................................................... A-2 
Moxa special utilities................................................................................................. A-2 

 



 

11  
Chapter 1 Introduction 

The Moxa IA260/IA261/IA262/EM-2260 computers are RISC-based ready-to-run embedded 
computers. Available features include two or four RS-232/422/485 serial ports, two 10/100 Mbps 
Ethernet port, CF socket for storage expansion, VGA output, two CAN bus ports (IA262 only) and 
USB host making the IA260/IA261/IA262/EM-2260 ideal for your embedded applications. 

 

The following topics are covered in this chapter: 

 Overview 
 Software Architecture 

 Journaling Flash File System (JFFS2) 
 Software Package 

 



IA260-261-262 EM-2260 LX User’s Manual Introduction 

Overview 
The IA260/IA261/IA262/EM-2260 embedded computers, which are designed for industrial 
automation applications, feature 2 or 4 RS-232/422/485 serial ports, 2 CAN bus ports (only for the 
IA262), dual Ethernet ports, 8 digital input channels, 8 digital output channels, VGA output and 
CF socket. The computers come in a compact, IP30 protected, industrial-strength rugged chassis. 
The DIN-Rail vertical form factor makes it easy to install the IA260/IA261/IA262 embedded 
computers in small cabinets. This space-saving feature also facilitates easy wiring, and makes the 
IA260/IA261/IA262/EM-2260 the best choice as front-end embedded controllers for industrial 
applications. 

The IA260/IA261/IA262/EM-2260 computers use a Ciruus Logic 199 Mhz RISC CPU. Unlike the 
X86 CPU, which uses a CISC design, the RISC architecture and modern semiconductor 
technology provide these embedded computers with a powerful computing engine and 
communication functions, without generating excessive heat. A 32 MB NOR Flash ROM and a 
128 MB SDRAM give you enough memory to install your application software directly on the 
embedded computer. In addition, dual LAN ports are built right into the RISC CPU. This network 
capability, in combination with the ability to control serial devices, makes the 
IA260/IA261/IA262/EM-2260 ideal communication platforms for data acquisition and industrial 
control applications. 

The IA260/IA261/IA262/EM-2260’s pre-installed Linux operating system (OS) provides an open 
software operating system for your software program development. Software written for desktop 
PCs can be easily ported to the computer with a GNU cross compiler, without modifying the 
source code. The OS, device drivers (e.g., serial and buzzer control), and your own applications, 
can all be stored in the NOR Flash memory. 

The IA260/IA261/IA262-LX also supports a VGA output. 

Software Architecture 
The Linux operating system that is pre-installed on the IA260/IA261/IA262/EM-2260 follows the 
standard Linux architecture, making it easy to accept programs that follow the POSIX standard. 
Program porting is done with the GNU Tool Chain provided by Moxa. In addition to Standard 
POSIX APIs, device drivers for the CF storage, buzzer and Network controls, and UART are also 
included in the Linux OS. 

O
S

 K
er

ne
l

API

AP

Protocol
 Stack

Device
Driver

Microkernel

Hardware

User Application Daemon (Apache, Telnet, FTPd, SNMP)

Application Programming Interface (POSIX, Socket, Secure Socket)

TCP, IP, UDP, ICMP, ARP, HTTP, SNMP, SMTP

CF, USB, DI/O, CANbus,UART, RTC

Memory Control, Schedule, Process

RS-232/422/485, Ethernet, CompactFlash, USB

   File
System

 

 1-2



IA260-261-262 EM-2260 LX User’s Manual Introduction 

The IA260/IA261/IA262/EM-2260’s built-in Flash ROM is partitioned into Boot Loader, Linux 
Kernel, Root File System, and User directory partitions. 

In order to prevent user applications from crashing the Root File System, the 
IA260/IA261/IA262/EM-2260 uses a specially designed Root File System with Protected 
Configuration for emergency use. This Root File System comes with serial and Ethernet 
communication capability for users to load the Factory Default Image file. The user directory 
saves the user’s settings and application. 

To improve system reliability, the IA260/IA261/IA262/EM-2260 has a built-in mechanism that 
prevents the system from crashing. When the Linux kernel boots up, the kernel will mount the root 
file system for read-only, and then enable services and daemons. During this time, the kernel will 
start searching for system configuration parameters via rc or inittab. 

Normally, the kernel uses the Root File System to boot up the system. The Root File System is 
protected, and cannot be changed by the user. This type of setup creates a “safe” zone. 

For more information about the memory map and programming, refer to Chapter 5, Programmer’s 
Guide. 

Journaling Flash File System (JFFS2) 
The Root File System and User directory in the flash memory is formatted with the Journaling 
Flash File System (JFFS2). The formatting process places a compressed file system in the flash 
memory. This operation is transparent to the user. 

The Journaling Flash File System (JFFS2), which was developed by Axis Communications in 
Sweden, puts a file system directly on the flash, instead of emulating a block device. It is designed 
for use on flash-ROM chips and recognizes the special write requirements of a flash-ROM chip. 
JFFS2 implements wear-leveling to extend the life of the flash disk, and stores the flash directory 
structure in the RAM. A log-structured file system is maintained at all times. The system is always 
consistent, even if it encounters crashes or improper power-downs, and does not require fsck (file 
system check) on boot-up. 

JFFS2 is the newest version of JFFS. It provides improved wear-leveling and garbage-collection 
performance, improved RAM footprint and response to system-memory pressure, improved 
concurrency and support for suspending flash erases, marking of bad sectors with continued use of 
the remaining good sectors (enhancing the write-life of the devices), native data compression 
inside the file system design, and support for hard links. 

The key features of JFFS2 are: 

 Targets the Flash ROM Directly 
 Robustness 
 Consistency across power failures 
 No integrity scan (fsck) is required at boot time after normal or abnormal shutdown 
 Explicit wear leveling 
 Transparent compression 

 

 

 

 

 

 1-3



IA260-261-262 EM-2260 LX User’s Manual Introduction 

 1-4

Although JFFS2 is a journaling file system, this does not preclude the loss of data. The file system 
will remain in a consistent state across power failures and will always be mountable. However, if 
the board is powered down during a write then the incomplete write will be rolled back on the next 
boot, but writes that have already been completed will not be affected. 

Additional information about JFFS2 is available at:  
http://sources.redhat.com/jffs2/jffs2.pdf 
http://developer.axis.com/software/jffs/ 
http://www.linux-mtd.infradead.org/ 
 

Software Package 
Boot Loader Moxa private 
Kernel Linux 2.6.23 
Protocol Stack ARP, PPP, CHAP, PAP, IPv4, ICMP, TCP, UDP, DHCP, FTP, SNMP V1, 

HTTP, NTP, NFS, SMTP, SSH 1.0/2.0, SSL, Telnet, PPPoE, OpenVPN 
File System JFFS2, NFS, Ext2, Ext3, VFAT/FAT 
OS shell command bash 
Busybox Linux normal command utility collection 
Utilities 
tinylogin login and user manager utility 
telnet telnet client program 
ftp FTP client program 
smtpclient email utility 
scp Secure file transfer Client Program 
Daemons 
pppd dial in/out over serial port daemon 
snmpd snmpd agent daemon 
telnetd telnet server daemon 
inetd TCP server manager program 
ftpd ftp server daemon 
apache web server daemon 
sshd secure shell server 
openvpn virtual private network 
openssl open SSL 
Linux Tool Chain 
Gcc (V 4.2.1) C/C++ PC Cross Compiler 
GDB (V5.3) Source Level Debug Server 
Glibc (V2.2.5) POSIX standard C library 

 

 

 

 

 

http://sources.redhat.com/jffs2/jffs2.pdf
http://developer.axis.com/software/jffs/
http://www.linux-mtd.infradead.org/


 

22  
Chapter 2 Getting Started 

In this chapter, we explain how to connect the IA260/IA261/IA262/EM-2260, how to turn on the 
power, how to get started programming, and how to use the IA260/IA261/IA262/EM-2260’s other 
functions. 

The following topics are covered in this chapter: 

 Powering on the IA260/IA261/IA262/EM-2260 
 Connecting the IA260/IA261/IA262/EM-2260 to a PC 

 Debug Port 
 Telnet Console 
 SSH Console 
 VGA Console 

 Configuring the Ethernet Interface 
 Modifying Network Settings 
 Modifying Network Settings by Command 

 CF Socket for Storage Expansion 
 Test Program—Developing Hello.c 

 Installing the Tool Chain (Linux) 
 Checking the Flash Memory Space 
 Compiling Hello.c 
 Uploading and Running the “Hello” Program 

 



IA260-261-262 EM-2260 LX User’s Manual Getting Started 

Powering on the IA260/IA261/IA262/EM-2260 
Connect the SG wire to the shielded contact located in the upper left corner of the 
IA260/IA261/IA262/EM-2260, and then power on the computer by connecting it to the power 
adaptor. It takes about 60 seconds for the system to boot up. Once the system is ready, the Ready 
LED will light up. 

 

NOTE After connecting the IA260/IA261/IA262/EM-2260 to the power supply, it will take about 60 
seconds for the operating system to boot up. The green Ready LED will not turn on until the 
operating system is ready. 

 

ATTENTION 

This product is intended to be supplied by a Listed Power Unit and output marked with “LPS” 
and rated 12-48 VDC, 580 mA (minimum requirements). 

 

Connecting the IA260/IA261/IA262/EM-2260 to a PC 
There are two ways to connect the IA260/IA261/IA262/EM-2260 to a PC: through the serial 
console port or via Telnet over the network. Or, you can use a monitor connected to the VGA 
output of the IA260/IA261/IA262/EM-2260 to connect directly to the computer. 

Debug Port 
The debug port gives users a convenient way of connecting to IA260/IA261/IA262/EM-2260. This 
method is particularly useful when using the computer for the first time. Debug port is useful for 
connecting IA260/IA261/IA262/EM-2260, so you do not need to know either of its two IP 
addresses in order to connect to the debug port. 

Use the debug port settings shown below. 

Baudrate 115200 bps 
Parity None 
Data bits 8 
Stop bits: 1 
Flow Control None 
Terminal VT100 

 

 

 

 

 

 

 

 

 2-2



IA260-261-262 EM-2260 LX User’s Manual Getting Started 

Once the connection is established, the following window will open. 

 

Telnet Console 
If you know at least one of the two IP addresses and netmasks, then you can use Telnet to connect 
to the IA260/IA261/IA262/EM-2260’s console utility. The default IP address and Netmask for 
each of the two ports are given below: 

 Default IP Address Netmask 
LAN 1 192.168.3.127 255.255.255.0 
LAN 2 192.168.4.127 255.255.255.0 

 

Use a cross-over Ethernet cable to connect directly from your PC to the 
IA260/IA261/IA262/EM-2260. You should first modify your PC’s IP address and netmask so that 
your PC is on the same subnet as one of IA260/IA261/IA262/EM-2260’s two LAN ports. For 
example, if you connect to LAN 1, you can set your PC’s IP address to 192.168.3.126 and netmask 
to 255.255.255.0. If you connect to LAN 2, you can set your PC’s IP address to 192.168.4.126 and 
netmask to 255.255.255.0. 

To connect to a hub or switch connected to your local LAN, use a straight-through Ethernet cable. 
The default IP addresses and netmasks are shown above. To log in, type the Login name and 
password as requested. The default values are both root:  

Login:  root 
Password: root 

 

 2-3



IA260-261-262 EM-2260 LX User’s Manual Getting Started 

 
You can proceed with configuring the network settings of the target computer when you reach the 
bash command shell. Configuration instructions are given in the next section. 

 

ATTENTION 

Debug Port Reminder 
Remember to choose VT100 as the terminal type. Use the cable CBL-4PINDB9F-100, which 
comes with the IA260/IA261/IA262/EM-2260, to connect to the serial console port. 
Telnet Reminder 
When connecting to the IA260/IA261/IA262/EM-2260 over a LAN, you must configure your 
PC’s Ethernet IP address to be on the same subnet as the IA260/IA261/IA262/EM-2260 that you 
wish to contact. If you do not get connected on the first try, re-check the IP settings, and then 
unplug and re-plug the IA260/IA261/IA262/EM-2260’s power cord. 

 

SSH Console 
The IA260/IA261/IA262/EM-2260 supports an SSH Console to provide users with better security 
options. 

Windows Users 
Click on the link http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html to download 
PuTTY (free software) to set up an SSH console for the IA260/IA261/IA262/EM-2260 in a 
Windows environment. The following figure shows a simple example of the configuration that is 
required. 

 2-4

http://www.chiark.greenend.org.uk/%7Esgtatham/putty/download.html


IA260-261-262 EM-2260 LX User’s Manual Getting Started 

 

Linux Users 
From a Linux machine, use the “ssh” command to access the IA260/IA261/IA262/EM-2260’s 
console utility via SSH. 
#ssh 192.168.3.127 

Select yes to complete the connection. 
 [root@bee_notebook root]# ssh 192.168.3.127 
The authenticity of host ‘192.168.3.127 (192.168.3.127)’ can’t be established.
RSA key fingerprint is 8b:ee:ff:84:41:25:fc:cd:2a:f2:92:8f:cb:1f:6b:2f. 
Are you sure you want to continue connection (yes/no)? yes_ 
 

 

NOTE SSH provides better security compared to Telnet for accessing the 
IA260/IA261/IA262/EM-2260’s console utility over the network. 

 

 

 

 

 

 2-5



IA260-261-262 EM-2260 LX User’s Manual Getting Started 

VGA Console 
You can connect VGA port to a LCD monitor with VGA interface. Then you connect a keyboard 
with USB interface to USB port. You will see a login request on the LCD monitor. To log in, type 
the Login name and password as requested. The default values are both root:  

Login:  root 
Password: root  

Configuring the Ethernet Interface 
The network settings of the IA260/IA261/IA262/EM-2260 can be modified with the Debug Port, 
or online over the network. 

Modifying Network Settings 
In this section, we use the serial console to configure the network settings of the target computer. 

1. Follow the instructions given in a previous section to access the Console Utility of the target 
computer via the serial console port, and then type #cd /etc/network to change directories. 

 
2. Type #vi interfaces to edit the network configuration file with vi editor. You can 

configure the Ethernet ports of the IA260/IA261/IA262/EM-2260 for static or dynamic 
(DHCP) IP addresses. 

Static IP addresses: 

As shown below, 4 network addresses must be modified: address, network, netmask, and 
broadcast. The default IP addresses are 192.168.3.127 for LAN1 with default netmask of 
255.255.255.0. 

Dynamic IP addresses: 

By default, the IA260/IA261/IA262/EM-2260 is configured for “static” IP addresses. To 
configure one or both LAN ports to request an IP address dynamically, replace static with 
dhcp and then delete the address, network, netmask, and broadcast lines. 

Default Setting for LAN1 Dynamic Setting using DHCP 
iface eth0 inet static 
 address 192.168.3.127 
 network: 192.168.3.0 
 netmask 255.255.255.0 
 broadcast 192.168.3.255 

iface eth0 inet dhcp 

 

 

 

 2-6



IA260-261-262 EM-2260 LX User’s Manual Getting Started 

3. After the boot settings of the LAN interface have been modified, issue the following 
command to activate the LAN settings immediately: 
 
#/etc/init.d/networking restart 

NOTE After changing the IP settings, use the networking restart command to activate the new IP 
address. 

Modifying Network Settings by Command 
IP settings can be activated over the command, but the new settings will not be saved to the flash 
ROM without modifying the file /etc/network/interfaces. 

For example, type the command #ifconfig eth0 192.168.1.1 to change the IP address of 
LAN1 to 192.168.1.1. 

 

CF Socket for Storage Expansion 
The IA260/IA261/IA262 provides a CF socket for storage expansion. Moxa provides a CF flash 
disk for expansion that allows users to plug in a Compat Flash (CF) memory card of additional 
memory space. The CF socket is located on the front panel of the IA260/IA261/IA262. To install a 
CF card, you must first power off, and then plug the CF card directly into the socket.  

The CF card will be mounted at /mnt/cf. 

Test Program—Developing Hello.c 
In this section, we use the standard “Hello” programming example to illustrate how to develop a 
program for the IA260/IA261/IA262/EM-2260. In general, program development involves the 
following seven steps.  

Step 1: 
Connect the IA260/IA261/IA262/EM-2260 to a Linux PC. 

Step 2: 
Install Tool Chain (GNU Cross Compiler & glibc). 

Step 3: 
Set the cross compiler and glibc environment variables. 

Step 4: 
Code and compile the program. 

Step 5: 
Download the program to the IA260/IA261/IA262/EM-2260 
Via FTP or NFS. 

Step 6: 
Debug the program 

 If bugs are found, return to Step 4. 
 If no bugs are found, continue with Step 7. 

Step 7: 
Back up the user directory (distribute the program to additional 
IA260/IA261/IA262/EM-2260 units if needed). 

x86

Cross
Compiler

 2-7



IA260-261-262 EM-2260 LX User’s Manual Getting Started 

Installing the Tool Chain (Linux) 
The Linux Operating System must be pre-installed in the PC before installing the 
IA260/IA261/IA262/EM-2260 GNU Tool Chain. Fedora core or compatible versions are 
recommended. The Tool Chain requires approximately 1 GB of hard disk space on your PC. The 
IA260/IA261/IA262/EM-2260 Tool Chain software is located on the 
IA260/IA261/IA262/EM-2260 CD. To install the Tool Chain, insert the CD into your PC and then 
issue the following commands: 
#mount /dev/cdrom /mnt/cdrom 
#sh /mnt/cdrom/tool-chain/linux/arm-linux_x.x.sh (where x.x indicates the version of 
the Tool Chain) 

The Tool Chain will be installed automatically on your Linux PC within a few minutes. Before 
compiling the program, be sure to set the following path first, since the Tool Chain files, including 
the compiler, link, and library, are located in this directory.  
PATH=/usr/local/arm-linux/bin:$PATH 

Setting the path allows you to run the compiler from any directory.  

Checking the Flash Memory Space 
If the flash memory is full, you will not be able to save data to the Flash ROM. Use the following 
command to calculate the amount of “Available” flash memory: 
/>df –h 

 
If there isn’t enough “Available” space for your application, you will need to delete some existing 
files. To do this, connect your PC to the IA260/IA261/IA262/EM-2260 with the console cable, and 
then use the console utility to delete the files from the IA260/IA261/IA262/EM-2260’s flash 
memory. To check the amount of free space available, look at the directories in the read/write 
directory /dev/mtdblock3. Note that the directories /home and /etc are both mounted on the 
directory /dev/mtdblock3. 

NOTE If the flash memory is full, you will need to free up some memory space before saving files to 
the Flash ROM. 

 

 2-8



IA260-261-262 EM-2260 LX User’s Manual Getting Started 

 2-9

Compiling Hello.c 
The package CD contains several example programs. Here we use hello.c as an example to show 
you how to compile and run your applications. Type the following commands from your PC to 
copy the files used for this example from the CD to your computer’s hard drive: 
# cd /tmp/ 
# mkdir example 
# cp –r /mnt/cdrom/example/* /tmp/example 

To compile the program, go to the hello subdirectory and issue the following commands: 
#cd example/hello 
#make 

You should receive the following response: 
 [root@localhost hello]# make 
 /usr/local/arm-linux/bin/arm-linux-gcc –o hello-release hello.c 
 /usr/local/arm-linux/bin/arm-linux-strip –s hello-release 
 /usr/local/arm-linux/bin/arm-linux-gcc –ggdb -o hello-debug hello.c 
 [root@localhost hello]# _ 

Both hello-release and hello-debug will be generated, which are described below:  

hello-release—an ARM platform execution file (created specifically to run on the 
IA260/IA261/IA262/EM-2260) 

hello-debug—an ARM platform GDB debug server execution file (see Chapter 5 for details about 
the GDB debug tool) 

NOTE Since Moxa’s tool chain places a specially designed Makefile in the directory 
/tmp/example/hello, be sure to type the #make command from within that directory. This 
special Makefile uses the arm-linux-gcc compiler to compile the hello.c source code for the 
ARM environment. If you type the #make command from within any other directory, Linux will 
use the x86 compiler (for example, cc or gcc). 

Uploading and Running the “Hello” Program 
Use the following commands to upload hello-release to the IA260/IA261/IA262/EM-2260 via 
FTP.  

1. From the PC, type: 
 
#ftp 192.168.3.127 

2. Use the bin command to set the transfer mode to Binary mode, and then use the put command 
to initiate the file transfer: 
 
ftp> bin 
ftp> put hello-release 

3. From the IA260/IA261/IA262/EM-2260, type: 
 
# chmod +x hello-release 
# ./hello-release 

The word Hello will be printed on the screen. 
root@Moxa:~# ./hello-release 
Hello 



 

33  
Chapter 3 Managing Embedded Linux 

This chapter includes information about version control, deployment, updates, and peripherals. 
The information in this chapter will be particularly useful when you need to run the same 
application on several IA260/IA261/IA262/EM-2260 units. 

The following topics are covered in this chapter: 

 System Version Information 
 Upgrading the Firmware 
 Loading Factory Defaults 

 Enabling and Disabling Daemons 
 Setting the Run-Level 
 Adjusting the System Time 

 Setting the Time Manually 
 NTP Client 
 Updating the Time Automatically 

 Cron—Daemon to Execute Scheduled Commands 

 



IA260-261-262 EM-2260 LX User’s Manual Managing Embedded Linux 

System Version Information 
To determine the hardware capability of your IA260/IA261/IA262/EM-2260, and what kind of 
software functions are supported, check the version numbers of your 
IA260/IA261/IA262/EM-2260’s kernel, and user file system. Contact Moxa to determine the 
hardware version. You will need the Production S/N (Serial number), which is located on the 
IA260/IA261/IA262/EM-2260’s bottom label. 

To check the kernel version, type: 
#kversion 

   192.168.3.127 – PuTTY 

root@Moxa:~# kversion 
Version 1.0 
root@Moxa:~#   
 

 

Upgrading the Firmware 
The IA260/IA261/IA262/EM-2260’s bios, kernel, and root file system are combined into one 
firmware file, which can be downloaded from Moxa’s website (www.moxa.com). The name of the 
file has the form ia260/ia261/ia262/em2260-x.x.x.hfm , with “x.x.x” indicating the firmware 
version. To upgrade the firmware, download the firmware file to a PC, and then transfer the file to 
the IA260/IA261/IA262/EM-2260 via a Debug Port or Telnet Console connection. 

 

 

ATTENTION 

Upgrading the firmware will erase some data on the Flash ROM 
If you are using the ramdisk to store code for your applications, beware that updating the 
firmware will erase some of the data on the Flash ROM. We strongly suggest that you should 
back up your application files and data before updating the firmware. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3-2

http://www.moxa.com/


IA260-261-262 EM-2260 LX User’s Manual Managing Embedded Linux 

Since different Flash disks have different sizes, it’s a good idea to check the size of your Flash 
disk before upgrading the firmware, or before using the disk to store your application and data 
files. Use the #df –h command to list the size of each memory block and how much free space is 
available in each block. 

   192.168.3.127 – PuTTY 

root@Moxa:~# df -h 
Filesystem   Size   Used Available Use% Mounted on 

/dev/mtdblock2 8.0M      6.0M      2.0M    75% / 
/dev/ram0       499.0k   16.0k    458.0k    3% /var 
/dev/mtdblock3 6.0M    488.0k      5.5M    8% /tmp 
/dev/mtdblock3 6.0M    488.0k      5.5M    8% /home 
/dev/mtdblock3 6.0M    488.0k      5.5M    8% /etc 
tmpfs            30.4M         0     30.4M    0% /dev/shm 
root@Moxa:~# upramdisk 
root@Moxa:~# df -h 
Filesystem   Size   Used Available Use% Mounted on 

/dev/mtdblock2 8.0M      6.0M      2.0M    75% / 
/dev/ram0       499.0k   16.0k    458.0k    3% /var 
/dev/mtdblock3 6.0M    488.0k      5.5M    8% /tmp 
/dev/mtdblock3 6.0M    488.0k      5.5M    8% /home 
/dev/mtdblock3 6.0M    488.0k      5.5M    8% /etc 
tmpfs            30.4M         0     30.4M    0% /dev/shm 
/dev/ram1      16.0M     1.0k   15.1M    0%  /mnt/ramdisk 
root@Moxa:~# cd /mnt/ramdisk 
root@Moxa:/mnt/ramdisk#   
 

The following instructions give the steps required to save the firmware file to the 
IA260/IA261/IA262/EM-2260’s RAM disk and how to upgrade the firmware. 

1. Type the following commands to enable the RAM disk: 
 
#upramdisk 
#cd /mnt/ramdisk 

2. Type the following commands to use the IA260/IA261/IA262/EM-2260’s built-in FTP client 
to transfer the firmware file (ia260/ia261/ia262/em2260-x.x.x.hfm) from the PC to the 
IA260/IA261/IA262/EM-2260: 
 
/mnt/ramdisk> ftp <destination PC’s IP> 
Login Name: xxxx 
Login Password: xxxx 
ftp> bin 
ftp> get ia260/ia261/ia262/em2260-x.x.x.hfm 
 

 

 

 

 

 

 

 

 

 

 

 3-3



IA260-261-262 EM-2260 LX User’s Manual Managing Embedded Linux 

   192.168.3.127 – PuTTY 

root@Moxa:/mnt/ramdisk# ftp 192.168.3.193 
Connected to 192.168.3.193 (192.168.3.193). 
220 TYPSoft FTP Server 1.10 ready… 
Name (192.168.3.193:root): root 
331 Password required for root. 
Password: 
230 User root logged in. 
Remote system type is UNIX. 
Using binary mode to transfer files. 
ftp> cd newsw 
250 CWD command successful. “/C:/ftproot/newsw/” is current directory. 
ftp> bin 
200 Type set to I. 
ftp> ls 
200 Port command successful. 
150 Opening data connection for directory list. 
drw-rw-rw-    1 ftp  ftp     0 Nov 30 10:03 . 
drw-rw-rw-    1 ftp  ftp     0 Nov 30 10:03 . 
-rw-rw-rw-    1 ftp  ftp  13167772 Nov 29 10:24  
ia260/ia261/ia262/em2260-x.x.x.hfm 
226 Transfer complete. 
ftp> get ia260/ia261/ia262/em2260-x.x.x.hfm 
local: ia246/ia261/ia262/em2260-x.x.x.hfm  
remote: ia260/ia261/ia262/em2260-x.x.x.hfm 
200 Port command successful. 
150 Opening data connection for  ia260/ia261/ia262/em2260-x.x.x.hfm 
226 Transfer complete. 
13167772 bytes received in 2.17 secs (5925.8 kB/s) 
ftp>   
 

 

3. Next, use the upgradehfm command to upgrade the kernel and root file system: 
 
#upgradehfm  ia260/ia261/ia262/em2260-x.x.x.hfm 

   192.168.3.127 – PuTTY 

root@Moxa:/mnt/ramdisk# upgradehfm  ia260/ia261/ia262/em2260-x.x.x.hfm 
Moxa  IA26x upgrade firmware utility version 1.0. 
To check source firmware file context. 
The source firmware file context is OK. 
This step will destroy all your firmware. 
Continue ? (Y/N) : Y 
Now upgrade the file [kernel]. 
Format MTD device [/dev/mtd1] . . . 
MTD device [/dev/mtd1] erase 128 Kibyte @ 1C0000 – 100% complete. 
Wait to write file . . . 
Compleleted 100% 
Now upgrade the file [usrdisk]. 
Format MTD device [/dev/mtd2] . . . 
MTD device [/dev/mtd2] erase 128 Kibyte @ 800000 – 100% complete. 
Wait to write file . . . 
Compleleted 100% 
Upgrade the firmware is OK. 
 

 

 

ATTENTION 

The upgradehfm utility will reboot your target after the upgrade is OK. 

 

 

 3-4



IA260-261-262 EM-2260 LX User’s Manual Managing Embedded Linux 

Loading Factory Defaults 
To load the factory default settings, you must press the reset-to-default button for more than 5 
seconds. All files in the /home & /etc directories will be deleted. Note that while pressing the 
reset-to-default button, the Ready LED will blink three times, and then turn off. It takes about one 
minute for the factory defaults to fully load. For users who have logged onto the computer, please 
note that they will be forcibly logged out when the factory defaults are loaded and the systems 
start to reboot. 

Enabling and Disabling Daemons 
The following daemons are enabled when the IA260/IA261/IA262/EM-2260 boots up for the first 
time.  

snmpd ..........SNMP Agent daemon 
telnetd ..........Telnet Server daemon and Client 
inetd .............Internet Daemons 
ftpd...............FTP Server daemon and Client 
sshd ..............Secure Shell Server daemon 
httpd ............Apache WWW Server daemon 
 

Type the command “ps ” to list all processes currently running. 

   192.168.3.127 – PuTTY 

root@Moxa:~# cd /etc 
root@Moxa:/etc# ps  
  PID  Uid     VmSize Stat Command 
    1 root        532 S   init [3] 
    2 root            SWN [ksoftirqd/0] 
    3 root            SW< [events/0] 
    4 root            SW< [khelper] 
   13 root            SW< [kblockd/0] 
   14 root            SW  [khubd] 
   24 root            SW  [pdflush] 
   25 root            SW  [pdflush] 
   27 root            SW< [aio/0] 
   26 root            SW  [kswapd0] 
  604 root            SW  [mtdblockd] 
  609 root            SW  [pccardd] 
  611 root            SW  [pccardd] 
  625 root            SWN [jffs2_gcd_mtd3] 
  673 root        500 S   /bin/inetd 
  679 root       3004 S   /usr/bin/httpd -k start -d /etc/apache 
  682 bin         380 S   /bin/portmap 
  685 root       1176 S   /bin/sh --login 
  690 root        464 S   /bin/snmpd 
  694 nobody     3012 S   /usr/bin/httpd -k start -d /etc/apache 
  695 nobody     3012 S   /usr/bin/httpd -k start -d /etc/apache 
  696 nobody     3012 S   /usr/bin/httpd -k start -d /etc/apache 
  697 nobody     3012 S   /usr/bin/httpd -k start -d /etc/apache 
  698 nobody     3012 S   /usr/bin/httpd -k start -d /etc/apache 
  701 root        352 S   /bin/reportip 
  714 root       1176 S   -bash 
  726 root        436 S   /bin/telnetd 
  727 root       1180 S   -bash 
  783 root        628 R   ps  
root@Moxa:/ect#   
 

 

 

 3-5



IA260-261-262 EM-2260 LX User’s Manual Managing Embedded Linux 

To run a private daemon, you can edit the file rc.local, as follows: 
#cd /etc/rc.d 
#vi rc.local 

   192.168.3.127 – PuTTY 

root@Moxa:~# cd /etc/rc.d 
root@Moxa:/etc/rc.d# vi rc.local  
 

 

Next, use vi to open your application script. We use the example program tcps2-release, and put it 
to run in the background. 

   192.168.3.127 – PuTTY 

# !/bin/sh 
# Add you want to run daemon 
/home/tcps2-release & 

The enabled daemons will be available after you reboot the system. 

   192.168.3.127 – PuTTY 

root@Moxa:~# ps  
  PID  Uid     VmSize Stat Command 
    1 root        532 S   init [3] 
    2 root            SWN [ksoftirqd/0] 
    3 root            SW< [events/0] 
    4 root            SW< [khelper] 
   13 root            SW< [kblockd/0] 
   14 root            SW  [khubd] 
   24 root            SW  [pdflush] 
   25 root            SW  [pdflush] 
   27 root            SW< [aio/0] 
   26 root            SW  [kswapd0] 
  604 root            SW  [mtdblockd] 
  609 root            SW  [pccardd] 
  611 root            SW  [pccardd] 
  625 root            SWN [jffs2_gcd_mtd3] 
  673 root        500 S   /bin/inetd 
  674 root       1264 S   /root/tcps2-release 
  679 root       3004 S   /usr/bin/httpd -k start -d /etc/apache 
  682 bin         380 S   /bin/portmap 
  685 root       1176 S   /bin/sh --login 
  690 root        464 S   /bin/snmpd 
  694 nobody     3012 S   /usr/bin/httpd -k start -d /etc/apache 
  695 nobody     3012 S   /usr/bin/httpd -k start -d /etc/apache 
  696 nobody     3012 S   /usr/bin/httpd -k start -d /etc/apache 
  697 nobody     3012 S   /usr/bin/httpd -k start -d /etc/apache 
  698 nobody     3012 S   /usr/bin/httpd -k start -d /etc/apache 
  701 root        352 S   /bin/reportip 
  714 root       1176 S   -bash 
  726 root        436 S   /bin/telnetd 
  727 root       1180 S   -bash 
  783 root        628 R   ps  
root@Moxa:~#   

 

 

 

 

 

 

 3-6



IA260-261-262 EM-2260 LX User’s Manual Managing Embedded Linux 

Setting the Run-Level 
In this section, we outline the steps you should take to set the Linux run-level and execute requests. 
Use the following command to enable or disable settings: 

   192.168.3.127 – PuTTY 

root@Moxa:/ect/rc.d/rc3.d# ls 
S19nfs-common  S25nfs-user-server S99showreadyled 
S20snmpd    S55ssh 
S24pcmcia   S99rmnologin 
root@Moxa:/etc/rc.d/rc3.d#   
 

 
#cd /etc/rc.d/init.d 

Edit a shell script to execute /root/tcps2-release and save to tcps2 as an example. 
#cd /etc/rc.d/rc3.d 
#ln –s /etc/rc.d/init.d/tcps2 S60tcps2 

SxxRUNFILE stands for 
S: start the run file while linux boots up. 
xx: a number between 00-99. Smaller numbers have a higher priority. 
RUNFILE: the file name. 

   192.168.3.127 – PuTTY 

root@Moxa:/ect/rc.d/rc3.d# ls 
S19nfs-common  S25nfs-user-server S99showreadyled 
S20snmpd    S55ssh 
S24pcmcia   S99rmnologin 
root@Moxa:/ect/rc.d/rc3.d# ln –s /root/tcps2-release S60tcps2 
root@Moxa:/ect/rc.d/rc3.d# ls 
S19nfs-common  S25nfs-user-server S99rmnologin 
S20snmpd    S55ssh      S99showreadyled 
S24pcmcia   S60tcps2 
root@Moxa:/etc/rc.d/rc3.d#   
 

 

KxxRUNFILE stands for 
K: start the run file while linux shuts down or halts. 
xx: a number between 00-99. Smaller numbers have a higher priority. 
RUNFILE: the file name. 

To remove the daemon, remove the run file from the /etc/rc.d/rc3.d directory by using the 
following command: 
#rm –f /etc/rc.d/rc3.d/S60tcps2 

 

 

 

 

 

 

 

 

 3-7



IA260-261-262 EM-2260 LX User’s Manual Managing Embedded Linux 

Adjusting the System Time 

Setting the Time Manually 
The IA260/IA261/IA262/EM-2260 has two time settings. One is the system time, and the other is 
the RTC (Real Time Clock) time kept by the IA260/IA261/IA262/EM-2260’s hardware. Use the 
#date command to query the current system time or set a new system time. Use #hwclock to query 
the current RTC time or set a new RTC time. 

Use the following command to query the system time: 
#date  

Use the following command to query the RTC time: 
#hwclock 

Use the following command to set the system time: 
#date MMDDhhmmYYYY 

MM = Month 
DD = Date 
hhmm = hour and minute 
YYYY = Year 

Use the following command to set the RTC time: 
#hwclock –w 

The following figure illustrates how to update the system time and set the RTC time. 

   192.168.3.127 – PuTTY 

root@Moxa:~# date 
Fri Jun 23 23:30:31 CST 2000 
root@Moxa:~# hwclock 
Fri Jun 23 23:30:35 2000  -0.557748 seconds 
root@Moxa:~# date 120910002004 
Thu Dec  9 10:00:00 CST 2004 
root@Moxa:~# hwclock –w 
root@Moxa:~# date ; hwclock 
Thu Dec  9 10:01:07 CST 2004 
Thu Dec  9 10:01:08 2004  -0.933547 seconds 
root@Moxa:~#   
 

 

 

 

 

 

 

 

 

 

 

 

 

 3-8



IA260-261-262 EM-2260 LX User’s Manual Managing Embedded Linux 

NTP Client 
The IA260/IA261/IA262/EM-2260 has a built-in NTP (Network Time Protocol) client that is used 
to initialize a time request to a remote NTP server. Use #ntpdate <server name> to update the system 
time. 
#ntpdate time.stdtime.gov.tw 
#hwclock –w 

Visit http://www.ntp.org for more information about NTP and NTP server addresses. 

   10.120.53.100 – PuTTY 

root@Moxa:~# date ; hwclock 
Sat Jan  1 00:00:36 CST 2000 
Sat Jan  1 00:00:37 2000  -0.772941 seconds 
root@Moxa:~# ntpdate time.stdtime.gov.tw 
 9 Dec 10:58:53 ntpdate[207]: step time server 220.130.158.52 offset 155905087.9
84256 sec 
root@Moxa:~# hwclock -w 
root@Moxa:~# date ; hwclock 
Thu Dec  9 10:59:11 CST 2004 
Thu Dec  9 10:59:12 2004  -0.844076 seconds 
root@Moxa:~#   
 

 

NOTE Before using the NTP client utility, check your IP and DNS settings to make sure that an Internet 
connection is available. Refer to Chapter 2 for instructions on how to configure the Ethernet 
interface, and see Chapter 4 for DNS setting information. 

 

Updating the Time Automatically 
In this subsection, we show how to use a shell script to update the time automatically. 

Example shell script to update the system time periodically 
#!/bin/sh 
ntpdate time.nist.gov  # You can use the time server’s ip address or domain 
        # name directly. If you use domain name, you must 
        # enable the domain client on the system by updating 
        # /etc/resolv.conf file. 
hwclock --systohc 
sleep 100  # Updates every 100 seconds. The min. time is 100 seconds. Change 
    # 100 to a larger number to update RTC less often. 

Save the shell script using any file name. E.g., fixtime 

How to run the shell script automatically when the kernel boots up 

Copy the example shell script fixtime to directory /etc/init.d, and then use  
chmod 755 fixtime to change the shell script mode. Next, use vi editor to edit the file /etc/inittab. 
Add the following line to the bottom of the file: 
ntp : 2345 : respawn : /etc/init.d/fixtime 

Use the command #init q to re-init the kernel. 

 

 

 

 3-9

http://www.ntp.org/


IA260-261-262 EM-2260 LX User’s Manual Managing Embedded Linux 

 3-10

Cron—Daemon to Execute Scheduled Commands 
Start Cron from the directory /etc/rc.d/rc.local. It will return immediately, so you don’t need to 
start it with ‘&’ to run in the background. 

The Cron daemon will search /etc/cron.d/crontab for crontab files, which are named after 
accounts in /etc/passwd. 

Cron wakes up every minute, and checks each command to see if it should be run in the current 
minute. Modify the file /etc/cron.d/crontab to set up your scheduled applications. Crontab files 
have the following format: 

min hour date month week user command 
0-59 0-23 1-31 1-12 0-6 (0 is Sunday)   

 

The following example demonstrates how to use Cron. 

How to use cron to update the system time and RTC time every day at 8:00 

STEP1: Write a shell script named fixtime.sh and save it to /home/. 
#!/bin/sh 
ntpdate time.nist.gov 
hwclock --systohc 
exit 0 

STEP2: Change mode of fixtime.sh  
#chmod 755 fixtime.sh 

STEP3: Modify /etc/cron.d/crontab file to run fixtime.sh at 8:00 every day. 

Add the following line to the end of the crontab: 
* 8 * * * root /home/fixtime.sh 

STEP4: Enable the cron daemon manually. 
#/etc/init.d/cron start 

STEP5: Enable cron when the system boots up. 

Add the following line in the file /etc/rc.d/rc.local 
#/etc/init.d/cron start 

 



 

44  
Chapter 4 Managing Communications 

In this chapter, we explain how to configure the IA260/IA261/IA262/EM-2260’s various 
communication functions. 

The following topics are covered in this chapter: 

 Telnet / FTP 
 DNS 
 Web Service—Apache 
 Install PHP for Apache Web Server 
 IPTABLES 
 NAT 

 NAT Example 
 Enabling NAT at Bootup 

 Dial-up Service—PPP 
 PPPoE 
 NFS (Network File System) 

 Setting up the IA260/IA261/IA262/EM-2260 as an NFS Client 
 Mail 
 SNMP 
 OpenVPN 

 



IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

Telnet / FTP 
In addition to supporting Telnet client/server and FTP client/server, the 
IA260/IA261/IA262/EM-2260 also supports SSH and sftp client/server. To enable or disable the 
Telnet/ftp server, you first need to edit the file /etc/inetd.conf. 

Enabling the Telnet/ftp server 

The following example shows the default content of the file /etc/inetd.conf. The default is to 
enable the Telnet/ftp server: 
discard dgram udp wait root /bin/discard 
discard stream tcp nowait root /bin/discard 
telnet stream tcp nowait root /bin/telnetd 
ftp stream tcp nowait root /bin/ftpd -l  

Disabling the Telnet/ftp server 

Disable the daemon by typing ‘#’ in front of the first character of the row to comment out the line. 

DNS 
The IA260/IA261/IA262/EM-2260 supports DNS client (but not DNS server). To set up DNS 
client, you need to edit three configuration files: /etc/hosts, /etc/resolv.conf, and 
/etc/nsswitch.conf. 
/etc/hosts 
This is the first file that the Linux system reads to resolve the host name and IP address. 
/etc/resolv.conf 
This is the most important file that you need to edit when using DNS for the other programs. For 
example, before you use #ntpdate time.nist.gov to update the system time, you will need to add the 
DNS server address to the file. Ask your network administrator which DNS server address you 
should use. The DNS server’s IP address is specified with the “nameserver” command. For 
example, add the following line to /etc/resolv.conf if the DNS server’s IP address is 168.95.1.1: 
nameserver 168.95.1.1 

   10.120.53.100 – PuTTY 

root@Moxa:/etc# cat resolv.conf 
# 
# resolv.conf  This file is the resolver configuration file 
# See resolver(5). 
# 
#nameserver 192.168.1.16 
nameserver 168.95.1.1 
nameserver 140.115.1.31 
nameserver 140.115.236.10 
root@Moxa:/etc#   
 

 
/etc/nsswitch.conf 
This file defines the sequence to resolve the IP address by using /etc/hosts file or /etc/resolv.conf. 

 

 

 

 

 

 

 4-2



IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

Web Service—Apache 
The Apache web server’s main configuration file is /etc/apache/conf/httpd.conf, with the 
default homepage located at /home/httpd/htdocs/index.html. Save your own homepage to the 
following directory: 

/home/httpd/htdocs/ 

 

Save your CGI page to the following directory: 

/home/httpd/cgi-bin/ 

Before you modify the homepage, use a browser (such as Microsoft Internet Explorer or Mozilla 
Firefox) from your PC to test if the Apache Web Server is working. Type the IP address of LAN1 
or LAN2 in the browser’s address box to open the homepage. E.g , type http://192.168.13.23 in 
the address box. 

 
 

 

 

 

 

 

 

 

 

 

 4-3



IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

To open the default CGI page, type http://192.168.13.23/cgi-bin/test-cgi in your browser’s 
address box. 

 
 

NOTE The CGI function is enabled by default. If you want to disable the function, modify the file 
/etc/apache/conf/httpd.conf. When you develop your own CGI application, make sure your CGI 
file is executable. 

   192.168.3.127 – PuTTY 

root@Moxa:/home/httpd/cgi-bin# ls –al 
drwxr—xr-x   2 root  root        0 Aug 24 1999 . 
drwxr—xr-x   5 root  root        0 Nov  5 16:16 .. 
-rwxr—xr-x   1 root  root      757 Aug 24 1999 test-cgi 
root@Moxa:/home/httpd/cgi-bin#   
  

 

 

 

 

 

 

 

 

 

 4-4



IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

Install PHP for Apache Web Server 
This embedded computer supports the PHP option. However, since the PHP file is 3 MB, it is not 
installed by default. To install it yourself, first make sure there is enough free space (at least 3 MB) 
on your embedded flash ROM). 

Step 1: Check that you have enough free space 

   192.168.3.127 – PuTTY 

root@Moxa:/bin# df -h 
Filesystem                Size      Used Available Use% Mounted on 
/dev/mtdblock2            8.0M      6.0M      2.0M  75% / 
/dev/ram0               499.0k     17.0k    457.0k   4% /var 
/dev/mtdblock3            6.0M    488.0k      5.5M   8% /tmp 
/dev/mtdblock3            6.0M    488.0k      5.5M   8% /home 
/dev/mtdblock3            6.0M    488.0k      5.5M   8% /etc 
tmpfs                    30.4M         0     30.4M   0% /dev/shm 
root@Moxa:/bin# 

To check that the /dev/mtdblock3 free space is greater than 3 MB. 

 

Step 2: Type ‘upramdisk’ to get the free space ram disk to save the package. 

   192.168.3.127 – PuTTY 

root@Moxa:/bin# upramdisk 
root@Moxa:/bin# df -h 
Filesystem                Size      Used Available Use% Mounted on 
/dev/mtdblock2            8.0M      6.0M      2.0M  75% / 
/dev/ram0               499.0k     18.0k    456.0k   4% /var 
/dev/mtdblock3            6.0M    488.0k      5.5M   8% /tmp 
/dev/mtdblock3            6.0M    488.0k      5.5M   8% /home 
/dev/mtdblock3            6.0M    488.0k      5.5M   8% /etc 
tmpfs                    30.4M         0     30.4M   0% /dev/shm 
/dev/ram1                16.0M      1.0k     15.1M   0% /var/ramdisk 
root@Moxa:/bin# 

Step 3: Download the PHP package from the CD-ROM. You can find the package in CD 
ROM/utility_tools/libmysqlclientx_x.x.xx_xxxxxx.ipk and 
ROM/utility_tools/libphpx_x.x.x_xxxxxx.ipk (where x indicates the version and CPU 
model) 

Step 4: Run ‘ipkg-cl install libmysqlclient5_5.1.23_arm.ipk’ and then run ‘ipkg-cl install 
libphp5_5.2.5_arm.ipk’ to install php 

Step 5: Test it. Use the browser to access http://192.168.3.127/phpinfo.php 

 4-5

http://192.168.3.127/phpinfo.php


IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

 
If you want to uninstall PHP, follow steps 2 to 4 but select the uninstall option. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4-6



IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

IPTABLES 
IPTABLES is an administrative tool for setting up, maintaining, and inspecting the Linux kernel’s 
IP packet filter rule tables. Several different tables are defined, with each table containing built-in 
chains and user-defined chains. 

Each chain is a list of rules that apply to a certain type of packet. Each rule specifies what to do 
with a matching packet. A rule (such as a jump to a user-defined chain in the same table) is called 
a “target.” 

The IA260/IA261/IA262/EM-2260 supports 3 types of IPTABLES table: Filter tables, NAT 
tables, and Mangle tables: 

A. Filter Table—includes three chains: 

INPUT chain—filters all incoming traffic destined for the local host. Note that all incoming 
packets destined for this host pass through this chain, no matter what interface or direction 
they came from. 

OUTPUT chain—filters packets sent from the local host. 

FORWARD chain—routs and filters forwarded packets only. Note that all forwarded traffic 
passes through this chain (not only in one direction), so you need to consider this factor when 
writing your rule-set. 

B. NAT Table—includes three chains: 

PREROUTING chain—transfers the destination IP address (DNAT) 
POSTROUTING chain—works after the routing process and before the Ethernet device 
process to transfer the source IP address (SNAT) 
OUTPUT chain—produces local packets 

Sub-tables 

Source NAT (SNAT)—changes the first source packet IP address. 
Destination NAT (DNAT)—changes the first destination packet IP address. 
MASQUERADE—a special form for SNAT. If one host can connect to Internet, then 
other computers that connect to this host can connect to the Internet when the computer 
does not have an actual IP address. 
REDIRECT—a special form of DNAT that re-sends packets to a local host independent 
of the destination IP address. 

C. Mangle Table—includes the following chains: 

INPUT—mangles packets after they have been routed, but before they are actually sent to the 
processing machine. 

FORWARD—mangles the packet after the initial routing decision, but before the last routing 
decision prior to sending the packet the out.  

PREROUTING chain—pre-processes packets before the routing process. 

OUTPUT chain—processes packets after the routing process. 

It has three extensions—TTL, MARK, and TOS. 

 
 
 

 4-7



IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

The following figure shows the IPTABLES hierarchy.  

 

Incoming 
Packets 

Mangle Table 
PREROUTING Chain 

NAT Table 
PREROUTING Chain 

Other Host 
Packets 

Mangle Table 
FORWARD Chain 

Filter Table 
FORWARD Chain 

Local Host 
Packets 

Mangle Table 
INPUT Chain 

Filter Table 
INPUT Chain 

Local 
Process 

Mangle Table 
OUTPUT Chain 

NAT Table 
OUTPUT Chain 

Filter Table 
OUTPUT Chain 

Mangle Table 
POSTROUTING Chain 

NAT Table 
POSTROUTING Chain 

Outgoing 
Packets 

 
 

 

 

 

 

 

 

 

 

 4-8



IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

The IA260/IA261/IA262/EM-2260 supports the following sub-modules. Be sure to use the module 
that matches your application. 

ip_queue ipt_REDIRECT ipt_ah iptable_filter 
ip_tables ipt_REJECT ipt_ecn iptable_mangle 
ipt_CLUSTERIP ipt_SAME ipt_iprange iptable_nat 
ipt_ECN ipt_TOS ipt_owner iptable_raw 
ipt_LOG ipt_TTL ipt_recent  
ipt_MASQUERADE ipt_ULOG ipt_tos  
ipt_NETMAP ipt_addrtype ipt_ttl  

 

NOTE The IA260/IA261/IA262/EM-2260 does NOT support IPv6 and ipchains. 

 

The basic syntax to enable and load an IPTABLES module is as follows: 
#lsmod 
#modprobe ip_tables 
#modprobe iptable_filter 
Use lsmod to check if the ip_tables module has already been loaded in the 
IA260/IA261/IA262/EM-2260. Use modprobe to insert and enable the module. 

Use the following command to load the modules (iptable_filter, iptable_mangle, iptable_nat): 
#modprobe iptable_filter 
 

NOTE IPTABLES plays the role of packet filtering or NAT. Take care when setting up the IPTABLES 
rules. If the rules are not correct, remote hosts that connect via a LAN or PPP may be denied 
access. We recommend using the Serial Console to set up the IPTABLES. 
 
Click on the following links for more information about iptables. 
 
http://www.linuxguruz.com/iptables/ 
http://www.netfilter.org/documentation/HOWTO//packet-filtering-HOWTO.html 

 

Since the IPTABLES command is very complex, to illustrate the IPTABLES syntax we have 
divided our discussion of the various rules into three categories: Observe and erase chain rules, 
Define policy rules, and Append or delete rules. 

Observe and erase chain rules 
Usage: 
# iptables [-t tables] [-L] [-n] 

-t tables:   Table to manipulate (default: ‘filter’); example: nat or filter. 
-L [chain]: List List all rules in selected chains. If no chain is selected, all chains are listed. 
-n:       Numeric output of addresses and ports. 

# iptables [-t tables] [-FXZ]  
-F:  Flush the selected chain (all the chains in the table if none is listed). 
-X:  Delete the specified user-defined chain. 
-Z:  Set the packet and byte counters in all chains to zero. 

 4-9

http://www.linuxguruz.com/iptables/
http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html


IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

Examples: 
# iptables -L -n  
In this example, since we do not use the -t parameter, the system uses the default ‘filter’ table. 
Three chains are included: INPUT, OUTPUT, and FORWARD. INPUT chains are accepted 
automatically, and all connections are accepted without being filtered. 
#iptables –F 
#iptables –X 
#iptables -Z 
 

Define policy for chain rules 
Usage: 
# iptables [-t tables] [-P] [INPUT, OUTPUT, FORWARD, PREROUTING, OUTPUT, POSTROUTING] 
[ACCEPT, DROP] 
-P:     Set the policy for the chain to the given target. 
INPUT:    For packets coming into the IA260/IA261/IA262/EM-2260. 
OUTPUT:   For locally-generated packets. 
FORWARD:  For packets routed out through the IA260/IA261/IA262/EM-2260. 
PREROUTING:  To alter packets as soon as they come in. 
POSTROUTING: To alter packets as they are about to be sent out. 

Examples: 
#iptables –P INPUT DROP 
#iptables –P OUTPUT ACCEPT 
#iptables –P FORWARD ACCEPT 
#iptables –t nat –P PREROUTING ACCEPT 
#iptables –t nat –P OUTPUT ACCEPT 
#iptables -t nat –P POSTROUTING ACCEPT 
 

In this example, the policy accepts outgoing packets and denies incoming packets. 

Append or delete rules: 
Usage: 
# iptables [-t table] [-AI] [INPUT, OUTPUT, FORWARD] [-io interface] [-p tcp, udp, icmp, 
all] [-s IP/network] [--sport ports] [-d IP/network] [--dport ports] –j [ACCEPT. DROP] 

-A:  Append one or more rules to the end of the selected chain. 
-I:  Insert one or more rules in the selected chain as the given rule number. 
-i:  Name of an interface via which a packet is going to be received. 
-o:  Name of an interface via which a packet is going to be sent. 
-p:  The protocol of the rule or of the packet to check. 
-s:  Source address (network name, host name, network IP address, or plain IP address). 
--sport: Source port number. 
-d:  Destination address. 
--dport: Destination port number. 
-j: Jump target. Specifies the target of the rules; i.e., how to handle matched packets. For 

example, ACCEPT the packet, DROP the packet, or LOG the packet. 
 
 
 
 
 
 
 

 4-10



IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

Examples: 

Example 1: Accept all packets from lo interface. 
# iptables –A INPUT –i lo –j ACCEPT 

Example 2: Accept TCP packets from 192.168.0.1. 
# iptables –A INPUT –i eth0 –p tcp –s 192.168.0.1 –j ACCEPT 

Example 3: Accept TCP packets from Class C network 192.168.1.0/24. 
# iptables –A INPUT –i eth0 –p tcp –s 192.168.1.0/24 –j ACCEPT 

Example 4: Drop TCP packets from 192.168.1.25. 
# iptables –A INPUT –i eth0 –p tcp –s 192.168.1.25 –j DROP 

Example 5: Drop TCP packets addressed for port 21. 
# iptables –A INPUT –i eth0 –p tcp --dport 21 –j DROP 

Example 6: Accept TCP packets from 192.168.0.24 to IA260/IA261/IA262/EM-2260’s port 137, 
138, 139 
# iptables –A INPUT –i eth0 –p tcp –s 192.168.0.24 --dport 137:139 –j ACCEPT 

Example 7: Log TCP packets that visit IA260/IA261/IA262/EM-2260’s port 25. 
# iptables –A INPUT –i eth0 –p tcp --dport 25 –j LOG 

Example 8: Drop all packets from MAC address 01:02:03:04:05:06. 
# iptables –A INPUT –i eth0 –p all –m mac –mac-source 01:02:03:04:05:06 –j DROP 

NOTE: In Example 8, remember to issue the command #modprobe ipt_mac first to load module 
ipt_mac. 

NAT 
NAT (Network Address Translation) protocol translates IP addresses used on one network to 
different IP addresses used on another network. One network is designated the inside network and 
the other designated the outside network. Typically, the IA260/IA261/IA262/EM-2260 connects 
several devices on a network and maps local inside network addresses to one or more global 
outside IP addresses, and un-maps the global IP addresses on incoming packets back into local IP 
addresses. 

NOTE Click on the following link for more information about iptables and NAT: 
http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html 

 

 

 

 

 

 

 

 

 

 

 

 4-11

http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html


IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

NAT Example 
The IP address of LAN1 is changed to 192.168.3.127 (you will need to load the module 
ipt_MASQUERADE): 

Embedded Computer

PC1 (Linux or Windows)

IP/Netmask:
Gateway:

192.168.3.100/24
192.168.3.127

PC2 (Linux or Windows)

IP/Netmask:
Gateway:

192.168.4.100/24
192.168.4.127

LAN1

LAN2

LAN1: 192.168.3.127/24

LAN2: 192.168.4.127/24

NAT Area / Private IP
 

1. #echo 1 > /proc/sys/net/ipv4/ip_forward 
2. #modprobe  ip_tables 
3. #modprobe  iptable_ filter 
4. #modprobe  ip_conntrack 
5. #modprobe  iptable_nat 
6. #modprobe  ipt_MASQUERADE 
7. #iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to-source 192.168.3.127 
8. #iptables -t nat -A POSTROUTING -o eth0 -s 192.168.3.0/24 -j MASQUERADE 

 

Enabling NAT at Bootup 
In most real world situations, you will want to use a simple shell script to enable NAT when the 
IA260/IA261/IA262/EM-2260 boots up. The following script is an example. 
#!/bin/bash  
# If you put this shell script in the /home/nat.sh 
# Remember to chmod 744 /home/nat.sh  
# Edit the rc.local file to make this shell startup automatically. 
# vi /etc/rc.d/rc.local  
# Add a line in the end of rc.local /home/nat.sh  
EXIF=‘eth0’  #This is an external interface for setting up a valid IP address. 
EXNET=‘192.168.4.0/24’  #This is an internal network address. 
# Step 1. Insert modules. 
# Here 2> /dev/null means the standard error messages will be dump to null device. 
modprobe ip_tables  2> /dev/null  
modprobe ip_nat_ftp  2> /dev/null  
modprobe ip_nat_irc  2> /dev/null  
modprobe ip_conntrack  2> /dev/null  
modprobe ip_conntrack_ftp  2> /dev/null  
modprobe ip_conntrack_irc  2> /dev/null  
# Step 2. Define variables, enable routing and erase default rules. 
PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin  
export PATH  

 4-12



IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

echo “1” > /proc/sys/net/ipv4/ip_forward  
/bin/iptables -F  
/bin/iptables -X  
/bin/iptables -Z  
/bin/iptables -F -t nat  
/bin/iptables -X -t nat  
/bin/iptables -Z -t nat  
/bin/iptables -P INPUT   ACCEPT  
/bin/iptables -P OUTPUT  ACCEPT  
/bin/iptables -P FORWARD ACCEPT  
/bin/iptables -t nat -P PREROUTING  ACCEPT  
/bin/iptables -t nat -P POSTROUTING ACCEPT  
/bin/iptables -t nat -P OUTPUT      ACCEPT  
# Step 3. Enable IP masquerade. 

Dial-up Service—PPP 
PPP (Point to Point Protocol) is used to run IP (Internet Protocol) and other network protocols over 
a serial link. PPP can be used for direct serial connections (using a null-modem cable) over a 
Telnet link, and links established using a modem over a telephone line. 

Modem / PPP access is almost identical to connecting directly to a network through the 
IA260/IA261/IA262/EM-2260’s Ethernet port. Since PPP is a peer-to-peer system, the 
IA260/IA261/IA262/EM-2260 can also use PPP to link two networks (or a local network to the 
Internet) to create a Wide Area Network (WAN). 

NOTE Click on the following links for more information about PPP: 
http://tldp.org/HOWTO/PPP-HOWTO/index.html 
http://axion.physics.ubc.ca/ppp-linux.html 

 
The pppd daemon is used to connect to a PPP server from a Linux system. For detailed 
information about pppd see the man page. 

Example 1: Connecting to a PPP server over a simple dial-up connection 
The following command is used to connect to a PPP server by modem. Use this command for old 
ppp servers that prompt for a login name (replace username with the correct name) and password 
(replace password with the correct password). Note that debug and defaultroute 192.1.1.17 are 
optional. 
#pppd connect ‘chat -v “ “ ATDT5551212 CONNECT” “ ogin: username word: password’ 
/dev/ttyM0 115200 debug crtscts modem defaultroute 

If the PPP server does not prompt for the username and password, the command should be entered 
as follows. Replace username with the correct username and replace password with the correct 
password. 
#pppd connect ‘chat -v “ “ ATDT5551212 CONNECT” “ ‘ user username password password 
/dev/ttyM0 115200 crtscts modem 

The pppd options are described below: 
connect ‘chat etc...’ 
This option gives the command to contact the PPP server. The ‘chat’ program is used to dial a 
remote computer. The entire command is enclosed in single quotes because pppd expects a 
one-word argument for the ‘connect’ option. The options for ‘chat’ are given below: 
-v 
verbose mode; log what we do to syslog 
“ “ 

 4-13

http://tldp.org/HOWTO/PPP-HOWTO/index.html
http://axion.physics.ubc.ca/ppp-linux.html


IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

Double quotes—don’t wait for a prompt, but proceed with the following instead (note that you 
must include a space before the second quotation mark). 
ATDT5551212 
Dial the modem, and proceed with the following. 
CONNECT 
Wait for an answer. 
“ “ 
Send a return (null text followed by the usual return) 
ogin:  username word: password 
Log in with username and password. 

Refer to the chat man page, chat.8, for more information about the chat utility. 
/dev/ 
Specify the callout serial port. 
115200 
The baudrate. 
debug 
Log status in syslog. 
crtscts 
Use hardware flow control between computer and modem (at 115200 this is a must). 
modem 
Indicates that this is a modem device; pppd will hang up the phone before and after making the 
call. 
defaultroute 
Once the PPP link is established, make it the default route; if you have a PPP link to the Internet, 
this is probably what you want. 
192.1.1.17 
This is a degenerate case of a general option of the form x.x.x.x:y.y.y.y. Here x.x.x.x is the local IP 
address and y.y.y.y is the IP address of the remote end of the PPP connection. If this option is not 
specified, or if just one side is specified, then x.x.x.x defaults to the IP address associated with the 
local machine’s hostname (located in /etc/hosts), and y.y.y.y is determined by the remote machine. 

Example 2: Connecting to a PPP server over a hard-wired link 
If a username and password are not required, use the following command (note that noipdefault is 
optional): 
#pppd connect ‘chat –v” “ “ “ ‘ noipdefault /dev/ttyM0 19200 crtscts  

If a username and password is required, use the following command (note that noipdefault is 
optional, and root is both the username and password): 
#pppd connect ‘chat –v” “ “ “ ‘ user root password root noipdefault 
/dev/ttyM0 19200 crtscts  

 

 

 

 

 

 

 

 4-14



IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

How to check the connection 
Once you’ve set up a PPP connection, there are some steps you can take to test the connection. 
First, type: 
/sbin/ifconfig 

(The file ifconfig may be located elsewhere, depending on your distribution.) You should be able 
to see all the network interfaces that are UP. ppp0 should be one of them, and you should 
recognize the first IP address as your own, and the “P-t-P address” (or point-to-point address) the 
address of your server. Here’s what it looks like on one machine: 

lo Link encap Local Loopback 
 inet addr 127.0.0.1   Bcast 127.255.255.255   Mask 255.0.0.0 
 UP LOOPBACK RUNNING   MTU 2000   Metric 1 
 RX packets 0 errors 0 dropped 0 overrun 0 
  
ppp0 Link encap Point-to-Point Protocol 
 inet addr 192.76.32.3   P-t-P 129.67.1.165   Mask 255.255.255.0 
 UP POINTOPOINT RUNNING   MTU 1500   Metric 1 
 RX packets 33 errors 0 dropped 0 overrun 0 
 TX packets 42 errors 0 dropped 0 overrun 0 

Now, type: 
ping z.z.z.z 

where z.z.z.z is the address of your name server. This should work. Here’s what the response 
could look like: 

Moxa:~$p ping 129.67.1.165  
PING 129.67.1.165 (129.67.1.165): 56 data bytes  
64 bytes from 129.67.1.165: icmp_seq=0 ttl=225 time=268 ms  
64 bytes from 129.67.1.165: icmp_seq=1 ttl=225 time=247 ms  
64 bytes from 129.67.1.165: icmp_seq=2 ttl=225 time=266 ms  
^C  
--- 129.67.1.165 ping statistics ---  
3 packets transmitted, 3 packets received, 0% packet loss  
round-trip min/avg/max = 247/260/268 ms  
Moxa:~$  

Try typing: 
netstat -nr 

This should show three routes, similar to the following: 

Kernel routing table 
Destination Gateway Genmask Flags Metric Ref Use 
iface       
129.67.1.165 0.0.0.0 255.255.255.255 UH 0 0 6 
ppp0       
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo 
0.0.0.0 129.67.1.165 0.0.0.0 UG 0 0 6298 
ppp0       

If your output looks similar but doesn’t have the destination 0.0.0.0 line (which refers to the 
default route used for connections), you may have run pppd without the ‘defaultroute’ option. At 
this point you can try using Telnet or ftp, bearing in mind that you’ll have to use numeric IP 
addresses unless you’ve set up /etc/resolv.conf correctly. 

 4-15



IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

Setting up a Machine for Incoming PPP Connections 
This first example applies to using a modem, and requiring authorization with a username and 
password. 
pppd/dev/ttyM0 115200 crtscts modem 192.168.16.1:192.168.16.2 login auth 

You should also add the following line to the file /etc/ppp/pap-secrets: 
*    *    ““    * 

The first star (*) lets everyone login. The second star (*) lets every host connect. The pair of 
double quotation marks (““) is to use the file /etc/passwd to check the password. The last star (*) 
is to let any IP connect. 

The following example does not check the username and password: 
pppd/dev/ttyM0 115200 crtscts modem 192.168.16.1:192.168.16.2 

PPPoE 
1. Connect IA260/IA261/IA262/EM-2260’s LAN port to an ADSL modem with a cross-over 

cable, HUB, or switch. 

2. Log into the IA260/IA261/IA262/EM-2260 as the root user. 

3. Edit the file /etc/ppp/chap-secrets and add the following: 

“username@hinet.net” * “password” * 
 

 

 
“username@hinet.net” is the username obtained from the ISP to log in to the ISP account. 
“password” is the corresponding password for the account. 

 

 

 

 

 

 

 

 

 

 

 

 4-16



IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

4. Edit the file /etc/ppp/pap-secrets and add the following: 

“username@hinet.net” * “password” * 

 
“username@hinet.net” is the username obtained from the ISP to log in to the ISP account. 
“password” is the corresponding password for the account. 

5. Add one of two files: /etc/ppp/options.eth0 or /etc/ppp/options.eth1. The choice depends on 
which LAN is connected to the ADSL modem. If you use LAN1 to connect to the ADSL 
modem, then add /etc/ppp/options.eth0. If you use LAN2 to connect to the ADSL modem, 
then add /etc/ppp/options.eth1. The file context is shown below: 

 
Type your username (the one you set in the /etc/ppp/pap-secrets and /etc/ppp/chap-secrets 
files) after the “name” option. You may add other options as desired. 

 

 4-17



IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

6. Set up DNS 
If you are using DNS servers supplied by your ISP, edit the file 
/etc/resolv.conf by adding the following lines of code: 

nameserver ip_addr_of_first_dns_server 
nameserver ip_addr_of_second_dns_server 

For example: 
nameserver 168..95.1.1 
nameserver 139.175.10.20 

7. Use the following command to create a pppoe connection: 
pppd eth0 
The eth0 is what is connected to the ADSL modem LAN port. The example above uses LAN1. 
To use LAN2, type: 
pppd eth1 

8. Type ifconfig ppp0 to check if the connection is OK or has failed. If the connection is OK, 
you will see information about the ppp0 setting for the IP address. Use ping to test the IP. 

9. If you want to disconnect it, use the kill command to kill the pppd process. 

NFS (Network File System) 
The Network File System (NFS) is used to mount a disk partition on a remote machine, as if it 
were on a local hard drive, allowing fast, seamless sharing of files across a network. NFS allows 
users to develop applications for the IA260/IA261/IA262/EM-2260, without worrying about the 
amount of disk space that will be available. The IA260/IA261/IA262/EM-2260 supports NFS 
protocol for client. 

NOTE Click on the following links for more information about NFS: 
http://www.tldp.org/HOWTO/NFS-HOWTO/index.html 

Setting up the IA260/IA261/IA262/EM-2260 as an NFS Client 
The following procedure is used to mount a remote NFS Server. 

1. To know the NFS Server’s shared directory. 
2. Establish a mount point on the NFS Client site. 
3. Mount the remote directory to a local directory. 
#mkdir  –p  /home/nfs/public 
#mount  –t  nfs  NFS_Server(IP):/directory  /mount/point 

Example 
#mount –t nfs 192.168.3.100:/home/public  /home/nfs/public 

 

 

 

 

 

 

 

 

 4-18

http://www.tldp.org/HOWTO/NFS-HOWTO/index.html


IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

Mail 
Smtpclient is a minimal SMTP client that takes an email message body and passes it on to an 
SMTP server. It is suitable for applications that use email to send alert messages or important logs 
to a specific user. 

To send an email message, use the ‘smtpclient’ utility, which uses SMTP protocol. Type 
#smtpclient –help to see the help message. 

Example: 
smtpclient  –s  test  –f  sender@company.com  –S  IP_address  receiver@company.com 
<  mail-body-message 

-s:  The mail subject. 
-f:  Sender’s mail address 
-S:  SMTP server IP address 

The last mail address receiver@company.com is the receiver’s e-mail address. 
mail-body-message is the mail content. The last line of the body of the message should contain 
ONLY the period ‘.’ character. 

You will need to add your hostname to the file /etc/hosts. 

SNMP 
The IA260/IA261/IA262/EM-2260 has built-in SNMP V1 (Simple Network Management Protocol) 
agent software. It supports RFC1317 RS-232 like group and RFC 1213 MIB-II. 

NOTE Click on the following links for more information about MIB II and RS-232 like groups: 
http://www.faqs.org/rfcs/rfc1213.html 
http://www.faqs.org/rfcs/rfc1317.html 
 

 IA260/IA261/IA262/EM-2260 does NOT support SNMP trap. 

 

OpenVPN 
OpenVPN provides two types of tunnels for users to implement VPNS: Routed IP Tunnels and 
Bridged Ethernet Tunnels. To begin with, check to make sure that the system has a virtual 
device /dev/net/tun. If not, issue the following command: 
# mknod /dev/net/tun c 10 200 

An Ethernet bridge is used to connect different Ethernet networks together. The Ethernets are 
bundled into one bigger, “logical” Ethernet. Each Ethernet corresponds to one physical interface 
(or port) that is connected to the bridge. 

On each OpenVPN machine, you should generate a working directory, such as /etc/openvpn, 
where script files and key files reside. Once established, all operations will be performed in that 
directory. 

 

 

 

 4-19

http://www.faqs.org/rfcs/rfc1213.html
http://www.faqs.org/rfcs/rfc1317.html


IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

Setup 1: Ethernet Bridging for Private Networks on Different Subnets 
1. Set up four machines, as shown in the following diagram. 

OpenVPN A

OpenVPN B

Host A 

LAN1: 192.168.2.171

Host B 

LAN1: 192.168.4.172
LAN1: 192.168.8.174

LAN1: 192.168.2.173

local net

local net

In
te

rn
et

In
te

rn
et

LAN2: 192.168.4.174

LAN2: 192.168.8.173

 
Host A (B) represents one of the machines that belongs to OpenVPN A (B). The two remote 
subnets are configured for a different range of IP addresses. When this setup is moved to a 
public network, the external interfaces of the OpenVPN machines should be configured for 
static IPs, or connect to another device (such as a firewall or DSL box) first. 
# openvpn --genkey --secret secrouter.key 

Copy the file that is generated to the OpenVPN machine. 

2. Generate a script file named openvpn-bridge on each OpenVPN machine. This script 
reconfigures interface “eth1” as IP-less, creates logical bridge(s) and TAP interfaces, loads 
modules, enables IP forwarding, etc.  
#---------------------------------Start----------------------------- 
 
#!/bin/sh 
 
iface=eth1  # defines the internal interface  
maxtap=`expr 1` # defines the number of tap devices. I.e., # of tunnels 
 
IPADDR= 
NETMASK= 
BROADCAST= 
 
# it is not a great idea but this system doesn’t support  
# /etc/sysconfig/network-scripts/ifcfg-eth1  
ifcfg_vpn() 
{ 
 while read f1 f2 f3 f4 r3 
 do 
  if [ “$f1” = “iface” -a “$f2” = “$iface” -a “$f3” = “inet” -a “$f4” = “static” ];then 
   i=`expr 0`  
   while : 
   do 
    if [ $i -gt 5 ]; then 
     break 
    fi  
    i=`expr $i + 1` 
    read f1 f2 
    case “$f1” in 

 4-20



IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

     address ) IPADDR=$f2 
      ;; 
      netmask ) NETMASK=$f2 
      ;; 
     broadcast ) BROADCAST=$f2 
      ;; 
    esac 
   done  
        break 
  fi 
 done < /etc/network/interfaces 
} 
 
# get the ip address of the specified interface 
mname= 
module_up() 
{ 
 oIFS=$IFS 
 IFS=‘ 
 ‘ 
 FOUND=“no” 
 for LINE in `lsmod` 
 do 
  TOK=`echo $LINE | cut -d’ ‘ -f1` 
  if [ “$TOK” = “$mname” ]; then 
   FOUND=“yes”; 
   break; 
  fi 
 done 
 IFS=$oIFS 
  
 if [ “$FOUND” = “no” ]; then 
  modprobe $mname  
 fi 
} 
 
start() 
{ 
 ifcfg_vpn 
 if [ ! \( -d “/dev/net” \) ]; then 
  mkdir /dev/net 
 fi 
  
 if [ ! \( -r “/dev/net/tun” \) ]; then 
  # create a device file if there is none  
  mknod /dev/net/tun c 10 200 
 fi  
 
 # load modules “tun” and “bridge”  
 mname=tun 
 module_up 
 mname=bridge 
 module_up 
 # create an ethernet bridge to connect tap devices, internal interface  
 brctl addbr br0 
 brctl addif br0 $iface 
 # the bridge receives data from any port and forwards it to other ports.  
  
 i=`expr 0` 
 while : 
 do 
  # generate a tap0 interface on tun   
  openvpn --mktun --dev tap${i} 
 
  # connect tap device to the bridge 
  brctl addif br0 tap${i} 
   
  # null ip address of tap device 

 4-21



IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

  ifconfig tap${i} 0.0.0.0 promisc up 
   
  i=`expr $i + 1` 
  if [ $i -ge $maxtap ]; then 
   break 
  fi 
 done 
  
 # null ip address of internal interface 
 ifconfig $iface 0.0.0.0 promisc up 
  
 # enable bridge ip 
 ifconfig br0 $IPADDR netmask $NETMASK broadcast $BROADCAST 
  
 ipf=/proc/sys/net/ipv4/ip_forward 
 # enable IP forwarding 
 echo 1 > $ipf 
 echo “ip forwarding enabled to” 
 cat $ipf 
} 
 
stop() { 
 echo “shutdown openvpn bridge.” 
 ifcfg_vpn 
 i=`expr 0` 
 while : 
 do 
  # disconnect tap device from the bridge 
  brctl delif br0 tap${i} 
  openvpn --rmtun --dev tap${i} 
   
  i=`expr $i + 1` 
  if [ $i -ge $maxtap ]; then 
   break 
  fi 
 done 
 brctl delif br0 $iface 
 brctl delbr br0 
 ifconfig br0 down 
 ifconfig $iface $IPADDR netmask $NETMASK broadcast $BROADCAST 
 killall -TERM openvpn 
} 
 
case “$1” in 
 start) 
  start 
  ;; 
 stop) 
  stop 
  ;; 
 restart) 
  stop 
  start 
  ;; 
 *) 
  echo “Usage: $0 [start|stop|restart]” 
  exit 1 
esac 
exit 0 
#---------------------------------- end ----------------------------- 

Create link symbols to enable this script at boot time: 
# ln -s /etc/openvpn/openvpn-bridge /etc/rc.d/rc3.d/S32vpn-br # for example 
# ln -s /etc/openvpn/openvpn-bridge /etc/rc.d/rc6.d/K32vpn-br # for example 

 

 

 4-22



IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

3. Create a configuration file named A-tap0-br.conf and an executable script file named 
A-tap0-br.sh on OpenVPN A. 
# point to the peer 
remote 192.168.8.174 
dev tap0 
secret /etc/openvpn/secrouter.key 
cipher DES-EDE3-CBC 
auth MD5 
tun-mtu 1500 
tun-mtu-extra 64 
ping 40 
up /etc/openvpn/A-tap0-br.sh 

#----------------------------------Start------------------------------ 
#!/bin/sh 
# value after “-net” is the subnet behind the remote peer 
route add -net 192.168.4.0 netmask 255.255.255.0 dev br0 
#---------------------------------- end ------------------------------ 

Create a configuration file named B-tap0-br.conf and an executable script file named 
B-tap0-br.sh on OpenVPN B. 
# point to the peer 
remote 192.168.8.173 
dev tap0 
secret /etc/openvpn/secrouter.key 
cipher DES-EDE3-CBC 
auth MD5 
tun-mtu 1500 
tun-mtu-extra 64 
ping 40 
up /etc/openvpn/B-tap0-br.sh 

#---------------------------------- Start---------------------------- 
#!/bin/sh 
# value after “-net” is the subnet behind the remote peer 
route add -net 192.168.2.0 netmask 255.255.255.0 dev br0 
#---------------------------------- end ----------------------------- 

Note: Select cipher and authentication algorithms by specifying “cipher” and “auth”. To see 
which algorithms are available, type: 
# openvpn --show-ciphers 
 

4. Start both of OpenVPN peers,  
# openvpn --config A-tap0-br.conf& 
# openvpn --config B-tap0-br.conf& 

If you see the line “Peer Connection Initiated with 192.168.8.173:5000” on each machine, the 
connection between OpenVPN machines has been established successfully on UDP port 5000. 

5. On each OpenVPN machine, check the routing table by typing the command: 
# route 

Destination Gateway Genmsk Flags Metric Ref Use Iface 
192.168.4.0 * 255.255.255.0 U 0 0 0 br0 
192.168.2.0 * 255.255.255.0 U 0 0 0 br0 
192.168.8.0 * 255.255.255.0 U 0 0 0 eth0 
 
Interface eth1 is connected to the bridging interface br0, to which device tap0 also connects, 
whereas the virtual device tun sits on top of tap0. This ensures that all traffic from internal 
networks connected to interface eth1 that come to this bridge write to the TAP/TUN device 
that the OpenVPN program monitors. Once the OpenVPN program detects traffic on the 
virtual device, it sends the traffic to its peer. 

 4-23



IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

6. To create an indirect connection to Host B from Host A, you need to add the following routing 
item: 
route add –net 192.168.4.0 netmask 255.255.255.0 dev eth0 

To create an indirect connection to Host A from Host B, you need to add the following routing 
item: 
route add –net 192.168.2.0 netmask 255.255.255.0 dev eth0 

Now ping Host B from Host A by typing:  
ping 192.168.4.174 

A successful ping indicates that you have created a VPN system that only allows authorized 
users from one internal network to access users at the remote site. For this system, all data is 
transmitted by UDP packets on port 5000 between OpenVPN peers. 

7. To shut down OpenVPN programs, type the command: 
# killall -TERM openvpn 

Setup 2: Ethernet Bridging for Private Networks on the Same Subnet 
1. Set up four machines as shown in the following diagram: 

 
2. The configuration procedure is almost the same as for the previous example. The only 

difference is that you will need to indicate the #up parameter.  
“/etc/openvpn/A-tap0-br.conf” and “/etc/openvpn/B-tap0-br.conf”. 

 

 

 

 

 

 

 

 

 4-24



IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

Setup 3: Routed IP 
1. Set up the four machines as shown in the following diagram: 

OpenVPN A

OpenVPN B

Host A 

LAN1: 192.168.2.171

Host B 

LAN1: 192.168.4.172
LAN1: 192.168.8.174

LAN1: 192.168.2.173

local net

local net

In
te

rn
et

In
te

rn
et

LAN2: 192.168.4.174

LAN2: 192.168.8.173

 
2. Create a configuration file named “A-tun.conf” and an executable script file named 

“A-tun.sh”. 
# point to the peer 
remote 192.168.8.174 
dev tun 
secret /etc/openvpn/secrouter.key 
cipher DES-EDE3-CBC 
auth MD5 
tun-mtu 1500 
tun-mtu-extra 64 
ping 40 
ifconfig 192.168.2.173 192.168.4.174 
up /etc/openvpn/A-tun.sh 

#--------------------------------- Start----------------------------- 
#!/bin/sh 
# value after “-net” is the subnet behind the remote peer 
route add -net 192.168.4.0 netmask 255.255.255.0 gw $5 
#--------------------------------- end ------------------------------ 

Create a configuration file named B-tun.conf and an executable script file named B-tun.sh on 
OpenVPN B: 
remote 192.168.8.173 
dev tun 
secret /etc/openvpn/secrouter.key 
cipher DES-EDE3-CBC 
auth MD5 
tun-mtu 1500 
tun-mtu-extra 64 
ping 40 
ifconfig 192.168.4.174 192.168.2.173 
up /etc/openvpn/B-tun.sh 

#--------------------------------- Start---------------------------- 
#!/bin/sh 
# value after “-net” is the subnet behind the remote peer 
route add -net 192.168.2.0 netmask 255.255.255.0 gw $5 
#--------------------------------- end ----------------------------- 

 

 4-25



IA260-261-262 EM-2260 LX User’s Manual Managing Communications 

 4-26

Note that the parameter “ifconfig” defines the first argument as the local internal interface and 
the second argument as the internal interface at the remote peer. 

Note that $5 is the argument that the OpenVPN program passes to the script file. Its value is 
the second argument of ifconfig in the configuration file. 

3. Check the routing table after you run the OpenVPN programs, by typing the command: 
# route 

Destination Gateway Genmsk Flags Metric Ref Use Iface
192.168.4.174 * 255.255.255.255 UH 0 0 0 tun0
192.168.4.0 192.168.4.174 255.255.255.0 UG 0 0 0 tun0
192.168.2.0 * 255.255.255.0 U 0 0 0 eth1
192.168.8.0 * 255.255.255.0 U 0 0 0 eth0
 

 



 

55  
Chapter 5 Development Tool Chains 

This chapter describes how to install a tool chain in the host computer that you use to develop your 
applications. In addition, the process of performing cross-platform development and debugging are 
also introduced. For clarity, the IA260/IA261/IA262/EM-2260 embedded computer is called a 
target computer.  

 

The following functions are covered in this chapter: 

 Linux Tool Chain 
 Steps for Installing the Linux Tool Chain 
 Compilation for Applications 
 On-Line Debugging with GDB 

 



IA260/IA261/IA262/EM-2260 Linux User’s Manual Development Tool Chains 

Linux Tool Chain 
The Linux tool chain contains a suite of cross compilers and other tools, as well as the libraries 
and header files that are necessary to compile your applications. These tool chain components 
must be installed in your host computer (PC) running Linux. We have confirmed that the 
following Linux distributions can be used to install the tool chain. 

Fedora 7, Debian 4 

Steps for Installing the Linux Tool Chain 
The tool chain needs about 1 GB of hard disk space. To install it, follow the steps.  
1. Insert the package CD into your PC and then issue the following commands: 

#mount /dev/cdrom /mnt/cdrom 
#sh /mnt/cdrom/tool-chain/linux/arm-linux_x.x.sh (where x.x indicates the version 
of the Tool Chain) 

2. Wait for the installation process to complete. This should take a few minutes. 
3. Add the directory /usr/local/arm-linux/bin to your path. You can do this for the current 

login by issuing the following commands: 
#export PATH=“/usr/local/arm-linux/bin:$PATH” 
Alternatively, you can add the same commands to $HOME/.bash_profile to make it 
effective for all login sessions. 

Compilation for Applications 
To compile a simple C application, use the cross compiler instead of the regular compiler: 
#arm-linux-gcc  –o example –Wall –g –O2 example.c 
#arm-linux-strip  –s example 
#arm-linux-gcc  -ggdb –o example-debug example.c 

Most of the cross compiler tools are the same as their native compiler counterparts, but with an 
additional prefix that specifies the target system. In the case of x86 environments, the prefix is 
i386-linux- and in the case of IA260/IA261/IA262/EM-2260 ARM boards, it is arm-linux-. 

For example, the native C compiler is gcc and the cross C compiler for ARM in the 
IA260/IA261/IA262/EM-2260 is arm-linux-gcc. 

 

 

 

 

 

 

 

 

 

 

 

 5-2



IA260/IA261/IA262/EM-2260 Linux User’s Manual Development Tool Chains 

 5-3

The following cross compiler tools are provided: 

ar Manages archives (static libraries) 
as Assembler 
c++, g++ C++ compiler 
cpp C preprocessor 
gcc C compiler 
gdb Debugger 
ld Linker 
nm Lists symbols from object files 
objcopy Copies and translates object files 
objdump Displays information about object files 
ranlib Generates indexes to archives (static libraries) 
readelf Displays information about ELF files 
size Lists object file section sizes 
strings Prints strings of printable characters from files (usually object files) 
strip Removes symbols and sections from object files (usually debugging information)

On-Line Debugging with GDB 
The tool chain also provides an on-line debugging mechanism to help you develop your program. 
Before performing a debugging session, add the option -ggdb to compile the program. A 
debugging session runs on a client-server architecture on which the server gdbserver is installed 
in the target computer and the client ddd is installed in the host computer. We’ll asuumne that you 
have uploaded a program named hello-debug to the target computer and started debugging the 
program. 

1. Log on to the target computer and run the debugging server program. 
#gdbserver 192.168.4.142:2000 hello-debug 

Process hello-debug created; pid=38 

The debugging server listens for connections at network port 2000 from the network interface 
192.168.4.142. The name of the program to be debugged follows these parameters. For a 
program requiring arguments, add the arguments behind the program name. 

2. In the host computer, change the directory to where the program source resides. 
cd /my_work_directory/myfilesystem/testprograms 

3. Execute the client program. 
#ddd --debugger arm-linux-gdb hello-debug & 

4. Enter the following command at the GDB, DDD command prompt. 
Target remote 192.168.4.99:2000 

The command produces a line of output on the target console, similar to the following. 
Remote debugging using 192.168.4.99:2000 

192.168.4.99 is the machine’s IP address, and 2000 is the port number. You can now begin 
debugging in the host environment using the interface provided by DDD. 

5. Set a break point on main function by double clicking, or by entering b main on the command 
line. 

6. Click the cont button. 



 

66  
Chapter 6 Programmer’s Guide 

This chapter includes important information for programmers. 

The following functions are covered in this chapter: 

 Flash Memory Map 
 Device API 
 RTC (Real Time Clock) 
 Buzzer 
 UART 
 MoxaCAN Programming Guide 
 Digital I/O 

 



IA260/IA261/IA262/EM-2260 Linux User’s Manual Programmer’s Guide 

Flash Memory Map 
Partition sizes are hard coded into the kernel binary. To change the partition sizes, you will need to 
rebuild the kernel. The flash memory map is shown in the following table. 

Address Size Contents 
0x00000000 – 0x0005FFFF 384 KB Boot Loader—Read ONLY 
0x00040000 – 0x002FFFFF 2.75 MB Kernel object code—Read ONLY 
0x00300000 – 0x00FFFFFF 13 MB Root file system (JFFS2) —Read ONLY 
0x01000000 – 0x01FFFFFF 16 MB User directory (JFFS2) —Read/Write 

 

Mount the user file system to /mnt/usrdisk with the root file system. Check to see if the user file 
system was mounted correctly. If the user file system is okay, the kernel will change the root file 
system to /mnt/usrdisk. If the user file system is not okay, the kernel will use the default Moxa 
file system. To finish the boot process, run the init program. 

NOTE 1. The default Moxa file system only enables the network and CF. It lets users recover the user 
file system when it fails. 

2. The user file system is a complete file system. Users can create and delete directories and 
files (including source code and executable files) as needed. 

3. Users can create the user file system on the PC host or target platform, and then copy it to 
the IA260/IA261/IA262/EM-2260. 

Device API 
The IA260/IA261/IA262/EM-2260 supports control devices with the ioctl system API. You will 
need to include <moxadevice.h>, and use the following ioctl function. 
int ioctl(int d, int request,…); 
 Input: int d  - open device node return file handle 

   int request – argument in or out 

Use the desktop Linux’s man page for detailed documentation: 
#man ioctl 

RTC (Real Time Clock) 
The device node is located at /dev/rtc. The IA260/IA261/IA262/EM-2260 supports Linux 
standard simple RTC control. You must include <linux/rtc.h>. 

1. Function: RTC_RD_TIME 
int ioctl(fd, RTC_RD_TIME, struct rtc_time *time); 

Description: read time information from RTC. It will return the value on argument 3. 

2. Function: RTC_SET_TIME 
int ioctl(fd, RTC_SET_TIME, struct rtc_time *time); 

Description: set RTC time. Argument 3 will be passed to RTC. 

 

 

 

 6-2



IA260/IA261/IA262/EM-2260 Linux User’s Manual Programmer’s Guide 

Buzzer 
The device node is located at /dev/console. The IA260/IA261/IA262/EM-2260 supports Linux 
standard buzzer control, with the IA260/IA261/IA262/EM-2260’s buzzer running at a fixed 
frequency of 100 Hz. You must include <sys/kd.h>. 

Function: KDMKTONE 
ioctl(fd, KDMKTONE, unsigned int arg); 

Description: The buzzer’s behavior is determined by the argument arg. The “high word” part 
of the argument gives the length of time the buzzer will sound, and the “low word” part gives 
the frequency. 

The buzzer’s on/off behavior is controlled by software. If you call the “ioctl” function, you 
MUST set the frequency at 100 Hz. If you use a different frequency, the system could crash. 

UART 
The normal tty device node is located at /dev/ttyM0 … ttyM3. 

The IA260/IA261/IA262/EM-2260 supports Linux standard termios control. The Moxa UART 
Device API allows you to configure ttyM0 to ttyM3 as RS-232, RS-422, 4-wire RS-485, or 2-wire 
RS-485. IA260/IA261/IA262/EM-2260 supports RS-232, RS-422, 2-wire RS-485, and 4-wire 
RS485. 

You must include <moxadevice.h>. 
#define RS232_MODE   0 
#define RS485_2WIRE_MODE  1 
#define RS422_MODE   2 
#define RS485_4WIRE_MODE  3 

1. Function: MOXA_SET_OP_MODE 
int ioctl(fd, MOXA_SET_OP_MODE, &mode) 

Description 
Set the interface mode. Argument 3 mode will pass to the UART device driver and change it. 

2. Function: MOXA_GET_OP_MODE 
int ioctl(fd, MOXA_GET_OP_MODE, &mode) 

Description 
Get the interface mode. Argument 3 mode will return the interface mode. 

There are two Moxa private ioctl commands for setting up special baudrates. 

Function: MOXA_SET_SPECIAL_BAUD_RATE 
Function: MOXA_GET_SPECIAL_BAUD_RATE 

If you use this ioctl to set a special baudrate, the termios cflag will be B4000000, in which case the 
B4000000 define will be different. If the baudrate you get from termios (or from calling tcgetattr()) 
is B4000000, you must call ioctl with MOXA_GET_SPECIAL_BAUD_RATE to get the actual 
baudrate. 

 

 

 

 

 6-3



IA260/IA261/IA262/EM-2260 Linux User’s Manual Programmer’s Guide 

Example to set the baudrate 
#include <moxadevice.h> 
#include <termios.h> 
struct termios term; 
int   fd, speed; 
fd = open(“/dev/ttyM0”, O_RDWR); 
tcgetattr(fd, &term); 
term.c_cflag &= ~(CBAUD | CBAUDEX); 
term.c_cflag |= B4000000; 
tcsetattr(fd, TCSANOW, &term); 
speed = 500000; 
ioctl(fd, MOXA_SET_SPECIAL_BAUD_RATE, &speed); 

Example to get the baudrate 
 #include <moxadevice.h> 
 #include <termios.h> 
 struct termios term; 
 int   fd, speed; 
 fd = open(“/dev/ttyM0”, O_RDWR); 
 tcgetattr(fd, &term); 
if ( (term.c_cflag & (CBAUD|CBAUDEX)) != B4000000 ) { 
  // follow the standard termios baud rate define 
} else { 
  ioctl(fd, MOXA_GET_SPECIAL_BAUD_RATE, &speed); 
} 

Baudrate inaccuracy 
Divisor = 921600/Target Baud Rate. (Only Integer part) 
ENUM = 8 * (921600/Target - Divisor) (Round up or down) 
Inaccuracy =( (Target Baud Rate – 921600/(Divisor + (ENUM/8))) / Target Baud Rate )* 100% 
E.g., 
To calculate 500000 bps 
Divisor = 1, ENUM = 7, 
Inaccuracy = 1.7% 
* Inaccuracy should be less than 2% for work reliably. 

Special Note 
1. If the target baudrate is not a special baudrate (e.g. 50, 75, 110, 134, 150, 200, 300, 600, 1200, 

1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600), the termios 
cflag will be set to the same flag. 

2. If you use stty to get the serial information, you will get speed equal to 0. 

 

 

 

 

 

 

 

 

 

 

 6-4



IA260/IA261/IA262/EM-2260 Linux User’s Manual Programmer’s Guide 

MoxaCAN Programming Guide 

Introduction 
CAN is a broadcast serial bus standard for connecting electronic control units (ECUs). 

Each node is able to send and receive messages, but not simultaneously: a message (consisting 
primarily of an ID—usually chosen to identify the message-type/sender—and up to eight message 
bytes) is transmitted serially onto the bus, one bit after another. This signal-pattern codes the 
message (in NRZ) and is sensed by all nodes. 

Moxa embedded computers provide the CAN bus interface for industrial CAN communication. 
Users can use the file control interface to read, write, or control the CAN interface as a file for 
easy CAN programming. 

Programming Guide 
The CAN data format looks like this: 

 
Define the structure for CAN programming as follows: 

moxacan_ioctl.h 
 
#ifndef _MOXACAN_IOCTL_H 
#define _MOXACAN_IOCTL_H 
 
#ifndef BIT 
#define BIT(x) (1<<(x)) 
#endif  // BIT 
 
#define MAX_CAN_DATA_LENGTH     8 
 
typedef union __attribute__ ((packed)) can_data_union { 
        unsigned char array[MAX_CAN_DATA_LENGTH]; 
        struct byte_struct { 
                unsigned char   byte1; 
                unsigned char   byte2; 
                unsigned char   byte3; 
                unsigned char   byte4; 
                unsigned char   byte5; 

 6-5



IA260/IA261/IA262/EM-2260 Linux User’s Manual Programmer’s Guide 

                unsigned char   byte6; 
                unsigned char   byte7; 
                unsigned char   byte8; 
        } byte; 
} can_data_u; 
 
typedef struct user_frame_struct { 
        int             id; 
        int             info;   // RTR & extend ID flag 
#define USER_RTR        BIT(0) 
#define USER_EXTEND_ID  BIT(1) 
        int             data_length; 
        can_data_u      data; 
} user_frame_t; 
 
 
// ioctl command code 
#define MOXACAN_IOCTL_SET_BAUD_RATE 0x100 
#define MOXACAN_IOCTL_GET_BAUD_RATE 0x101 
 
#endif  // _MOXACAN_IOCTL_H 
 
 
Then we can include this header for CAN programming 

We can open /dev/can[n] to use the CAN device. Then read(), write() or ioctl() the device files. If 
you complete the using, you should close() this file to release this device. 

 
#include        <stdio.h> 
#include        <stdlib.h> 
#include        <fcntl.h> 
#include        <string.h> 
#include        “moxacan_ioctl.h” 
 
#define PORT1_NAME      “/dev/can0 
#define PORT2_NAME      “/dev/can1 
int     main(int argc, char *argv[]) 
{   int             fd1, fd2, i, baudrate; 
    user_frame_t    txframe, rxframe; 
 
    fd1 = open(PORT1_NAME, O_RDWR); 
    if ( fd1 < 0 ) { 
        printf(“Open %s fail !\n”, PORT1_NAME); 
        return -1; 
    } 
    fd2 = open(PORT2_NAME, O_RDWR); 
    if ( fd2 < 0 ) { 
        printf(“Open %s fail !\n”, PORT2_NAME); 
        return -1; 
    } 
    baudrate = 100000; 
    ioctl(fd1, MOXACAN_IOCTL_SET_BAUD_RATE, &baudrate); 
    ioctl(fd2, MOXACAN_IOCTL_SET_BAUD_RATE, &baudrate); 
 

 6-6



IA260/IA261/IA262/EM-2260 Linux User’s Manual Programmer’s Guide 

    memset(&txframe, 0, sizeof(txframe)); 
    memset(&txframe, 0, sizeof(rxframe)); 
 
txframe.id = 12; 
    txframe.data_length = MAX_CAN_DATA_LENGTH; 
    txframe.info |= USER_EXTEND_ID; 
    for ( i=0; i<MAX_CAN_DATA_LENGTH; i++ ) 
         txframe.data.array[i] = 0x30+i; 
 
    i = write(fd1, &txframe, sizeof(txframe)); 
    printf(“Write port1 data return = %d\n”, i); 
    printf(“Write data contexts are following :\n”); 
    for ( i=0; i<MAX_CAN_DATA_LENGTH; i++ ) 
        printf("%c", txframe.data.array[i]); 
    printf("\n"); 
 
    usleep(1); 
    i = read(fd2, &rxframe, sizeof(rxframe)); 
    printf(“Read port2 data return = %d\n”, i); 
    printf(“Receive frame id = %d, length = %d\n”, rxframe.id, rxframe.data_length); 

    printf(“Receive data contexts are following :\n”); 
    for ( i=0; i<MAX_CAN_DATA_LENGTH; i++ ) 
        printf("%c", rxframe.data.array[i]); 
    printf("\n"); 
 

    close(fd1); 
    close(fd2); 
    return 0; 
} 
 
 
Makefile 
 
 

CROSS_COMPILE=arm-linux- 
CC=$(CROSS_COMPILE)gcc 
LD=$(CROSS_COMPILE)ld 
STRIP=$(CROSS_COMPILE)strip 
#STRIP=$(CROSS_COMPILE)strip -s 
 
TARGET=tcan 
TARGET1=canttrw 
 
all:    debug release 
 
debug: $(TARGET).c $(TARGET1).c moxacan_ioctl.h 
      $(CC) -ggdb -o $(TARGET)-debug $(TARGET).c 
      $(CC) -ggdb -o $(TARGET1)-debug $(TARGET1).c 
 
release: $(TARGET).c $(TARGET1).c moxacan_ioctl.h 
       $(CC) -o $(TARGET)-release $(TARGET).c 
       $(CC) -o $(TARGET1)-release $(TARGET1).c 

 6-7



IA260/IA261/IA262/EM-2260 Linux User’s Manual Programmer’s Guide 

       $(STRIP) $(TARGET)-release $(TARGET1)-release 
 
clean: 
 rm -f *.o $(TARGET)-debug $(TARGET)-release $(TARGET1)-debug $(TARGET1)-release 
 

Digital I/O 
Digital Output channels can be set to high or low. The channels are controlled by the function call 
set_dout_state( ). The digital input channels can be used to detect the state change of the digital 
input signal. The DI channels can also be used to detect whether or not the state of a digital signal 
changes during a fixed period of time. This can be done by the function call, set_din_event( ). 

Moxa provides 5 function calls to handle the digital I/O state change and event handling. 

 

Application Programming Interface 
Return error code definitions: 

#define DIO_ERROR_PORT -1 // no such port 
#define DIO_ERROR_MODE -2 // no such mode or state 
#define DIO_ERROR_CONTROL -3 // open or ioctl fail 
#define DIO_ERROR_DURATION -4 // The value of duration is not 0 or not in the range, 40 
<= duration <= 3600000 milliseconds (1 hour) 
#define DIO_ERROR_DURATION_20MS -5 // The value of duration must be a multiple of 20 
ms 
#define DIO_OK 0 

The definition for DIN and DOUT: 

#define DIO_HIGH 1 
#define DIO_LOW 0 

 

int set_dout_state(int doport, int state) 

Description: To set the DOUT port to high or low state. 

Input: int doport - which DOUT port you want to set. Port starts from 0 to 3. 

int state - to set high or low state; DIO_HIGH (1) for high, DIO_LOW (0) for low. 

Output: none. 

Return: reference the error code. 

int get_din_state(int diport, int *state) 

Description: To get the DIN port state. 

Input: int diport - get the current state of which DIN port. Port numbering is from 0 to 3. 

int *state - save the current state. 

Output: state - DIO_HIGH (1) for high, DIO_LOW (0) for low. 

Return: reference the error code. 

int get_dout_state(int doport, int *state) 

 6-8



IA260/IA261/IA262/EM-2260 Linux User’s Manual Programmer’s Guide 

Description: To get the DOUT port state. 

Input: int doport - get the current state of which DOUT port. 

int *state - save the current state. 

Output: state - DIO_HIGH (1) for high, DIO_LOW (0) for low. 

Return: reference the error code. 

int set_din_event(int diport, void (*func)(int diport), int mode, long int duration) 

Description: Set the event for DIN when the state is changed from high to low or from low to high. 

Input: int diport - the port that will be used to detect the DIN event. 

Port numbering is from 0 to 3. 

void (*func) (int diport) - Not NULL 

> Returns the call back function. When the event occurs, the call back function will be invoked. 

NULL 

> Clears this event 

int mode DIN_EVENT_HIGH_TO_LOW 

(1): from high to low 

DIN_EVENT_LOW_TO_HIGH 

(0): from low to high 

DIN_EVENT_CLEAR 

(-1): clear this event 

unsigned long duration - 0: detect the din event > DIN_EVENT_HIGH_TO_LOW or 
DIN_EVENT_LOW_TO_HIGH> without duration 

- Not 0 

> detect the din event 

DIN_EVENT_HIGH_TO_LOW or 

DIN_EVENT_LOW_TO_HIGH with 

duration. The value of “duration” must be a 

multiple of 20 milliseconds. The range of 

“duration” is 0, or 40 <= duration <= 3600000 

milliseconds. The error of the measurement is 

24 ms. For example, if the DIN duration is 

200 ms, this event will be generated when the 

DIN pin stays in the same state for a time 

between 176 ms and 200 ms. 

Output: none. 

Return: reference the error code. 

 

 6-9



IA260/IA261/IA262/EM-2260 Linux User’s Manual Programmer’s Guide 

int get_din_event(int diport, int *mode, long int *duration) 

Description: To retrieve the DIN event configuration, including mode 

(DIN_EVENT_HIGH_TO_LOW or DIN_EVENT_LOW_TO_HIGH), and the value of 
“duration.” 

Input: int diport - which DIN port you want to retrieve. 

- The port whose din event setting we wish to retrieve 

int *mode - save which event is set. 

unsigned long *duration - the duration of the DIN port is kept in high or low state. 

- return to the current duration value of diport 

Output: mode DIN_EVENT_HIGH_TO_LOW 

(1): from high to low 

DIN_EVENT_LOW_TO_HIGH(0): from low to high 

DIN_EVENT_CLEAR(-1): clear this event 

duration The value of duration should be 0 or 40 <= duration 

<= 3600000 milliseconds. 

Return: reference the error code. 

Special Note 
Don’t forget to link the library libmoxalib for DI/DO programming, and also include the header 
file moxadevice.h. The DI/DO library only can be used by one program at a time. 

Examples 
DIO Program Source Code File Example 

File Name: tdio.c 

Description: The program indicates to connect DO1 to DI1, change the digital output state to high 
or low by manual input, then detect and count the state changed events from DI1. 
#include <stdio.h> 

#include <stdlib.h> 

#include <moxadevice.h> 

#include <fcntl.h> 

#ifdef DEBUG 

#define dbg_printf(x...) printf(x) 

#else 

#define dbg_printf(x...) 

#endif 

#define MIN_DURATION 40 

static char *DataString[2]={"Low ", "High "}; 

static void hightolowevent(int diport) 

{ 

printf("\nDIN port %d high to low.\n", diport); 

 6-10



IA260/IA261/IA262/EM-2260 Linux User’s Manual Programmer’s Guide 

} 

static void lowtohighevent(int diport) 

{ 

printf("\nDIN port %d low to high.\n", diport); 

} 

int main(int argc, char * argv[]) 

{ 

int i, j, state, retval; 

unsigned long duration; 

while( 1 ) { 

printf("\nSelect a number of menu, other key to exit. \n\ 

1. set high to low event \n\ 

2. get now data. \n\ 

3. set low to high event \n\ 

4. clear event \n\ 

5. set high data. \n\ 

6. set low data. \n\ 

7. quit \n\ 

8. show event and duration \n\ 

Choose : "); 

retval =0; 

scanf("%d", &i); 

if ( i == 1 ) { // set high to low event 

printf("Please keyin the DIN number : "); 

scanf("%d", &i); 

printf("Please input the DIN duration, this minimun value must be over %d : ", MIN_DURATION); 

scanf("%lu", &duration); 

retval=set_din_event(i, hightolowevent, DIN_EVENT_HIGH_TO_LOW, duration); 

} else if ( i == 2 ) { // get now data 

printf("DIN data : "); 

for ( j=0; j<4; j++ ) { 

get_din_state(j, &state); 

printf("%s", DataString[state]); 

} 

printf("\n"); 

printf("DOUT data : "); 

for ( j=0; j<MAX_DOUT_PORT; j++ ) { 

get_dout_state(j, &state); 

printf("%s", DataString[state]); 

} 

printf("\n"); 

 6-11



IA260/IA261/IA262/EM-2260 Linux User’s Manual Programmer’s Guide 

} else if ( i == 3 ) { // set low to high event 

printf("Please keyin the DIN number : "); 

scanf("%d", &i); 

printf("Please input the DIN duration, this minimun value must be over %d :", MIN_DURATION); 

scanf("%lu", &duration); 

retval = set_din_event(i, lowtohighevent, DIN_EVENT_LOW_TO_HIGH, duration); 

} else if ( i == 4 ) { // clear event 

printf("Please keyin the DIN number : "); 

scanf("%d", &i); 

retval=set_din_event(i, NULL, DIN_EVENT_CLEAR, 0); 

} else if ( i == 5 ) { // set high data 

printf("Please keyin the DOUT number : "); 

scanf("%d", &i); 

retval=set_dout_state(i, 1); 

} else if ( i == 6 ) { // set low data 

printf("Please keyin the DOUT number : "); 

scanf("%d", &i); 

retval=set_dout_state(i, 0); 

} else if ( i == 7 ) { // quit 

break; 

} else if ( i == 8 ) { // show event and duration 

printf("Event:\n"); 

for ( j=0; j<MAX_DOUT_PORT; j++ ) { 

retval=get_din_event(j, &i, &duration); 

switch ( i ) { 

case DIN_EVENT_HIGH_TO_LOW : 

printf("(htl,%lu)", duration); 

break; 

case DIN_EVENT_LOW_TO_HIGH : 

printf("(lth,%lu)", duration); 

break; 

case DIN_EVENT_CLEAR : 

printf("(clr,%lu)", duration); 

break; 

default : 

printf("err " ); 

break; 

} 

} 

printf("\n"); 

} else { 

 6-12



IA260/IA261/IA262/EM-2260 Linux User’s Manual Programmer’s Guide 

 6-13

printf("Select error, please select again !\n"); 

} 

switch(retval) { 

case DIO_ERROR_PORT: 

printf("DIO error port\n"); 

break; 

case DIO_ERROR_MODE: 

printf("DIO error mode\n"); 

break; 

case DIO_ERROR_CONTROL: 

printf("DIO error control\n"); 

break; 

case DIO_ERROR_DURATION: 

printf("DIO error duratoin\n"); 

case DIO_ERROR_DURATION_20MS: 

printf("DIO error! The duratoin is not a multiple of 20 ms\n"); 

break; 

} 

} 

return 0; 

} 

 

DIO Program Make File Example 
 

FNAME=tdio 

CC=arm-linux-gcc 

STRIP=arm-linux-strip 

release: 

$(CC) -o $(FNAME) $(FNAME).c -lmoxalib -lpthread 

$(STRIP) -s $(FNAME) 

debug: 

$(CC) -DDEBUG -o $(FNAME)-dbg $(FNAME).cxx -lmoxalib -lpthread 

clean: 

/bin/rm -f $(FNAME) $(FNAME)-dbg *.o 

 

 

 

 



 

AA  
Appendix A System Commands 

Linux normal command utility collection 
File manager 

1. cp copy file 
2. ls list file 
3. ln make symbolic link file 
4. mount mount and check file system 
5. rm delete file 
6. chmod change file access permissions 
7. chown change file owner 
8. chgrp change file group 
9. sync sync file system, let system file buffer be saved to hardware 
10. mv move file 
11. pwd display the current working directory 
12. df list now file system space 
13. mkdir make new directory 
14. rmdir delete directory 

Editor 
1. vi text editor 
2. cat dump file context 
3. zcat compress or expand files 
4. grep search string on file 
5. cut get string on file 
6. find find where the files are 
7. more dump file by one page 
8. test test file exist or not 
9. sleep sleep (seconds) 
10. echo echo string 

Network 
1. ping ping to test network 
2. route routing table manager 
3. netstat display network status 
4. ifconfig set network ip address 
5. tracerout trace route 
6. tftp Trivial File Transfer Protocol client 
7. telnet remote login utility 
8. ftp File Transfer Protocol utility 

 



IA260/IA261/IA262/EM-2260 Linux User’s Manual System Commands 

 A-2

Process 
1. kill kill process 
2. ps display now running process 

Other 
1. dmesg dump kernel log message 
2. stty to set serial port 
3. mknod make device node 
4. free display system memory usage 
5. date print or set the system date and time 
6. env run a program in a modified environment 
7. clear clear the terminal screen 
8. reboot reboot / power off/on the server 
9. halt halt the server 
10. du estimate file space usage 
11. gzip, gunzip compress or expand files 
12. hostname show system’s host name 

Moxa special utilities 
1. kversion show kernel version 
2. upramdisk mount ramdisk 
3. downramdisk unmount ramdisk 
4. setinterface configure serial port mode as RS-232, RS-422, or RS-485 
5. upgradehfm firmware upgrade utility 
6. reportip UC Finder host program 
7. setdef reset to default script 

 


	1. Introduction
	Overview
	Software Architecture
	Journaling Flash File System (JFFS2)
	Software Package


	2. Getting Started
	Powering on the IA260/IA261/IA262/EM-2260
	Connecting the IA260/IA261/IA262/EM-2260 to a PC
	Debug Port
	Telnet Console
	SSH Console
	VGA Console

	Configuring the Ethernet Interface
	Modifying Network Settings
	Modifying Network Settings by Command

	CF Socket for Storage Expansion
	Test Program—Developing Hello.c
	Installing the Tool Chain (Linux)
	Checking the Flash Memory Space
	Compiling Hello.c
	Uploading and Running the “Hello” Program


	3. Managing Embedded Linux
	System Version Information
	Upgrading the Firmware
	Loading Factory Defaults

	Enabling and Disabling Daemons
	Setting the Run-Level
	Adjusting the System Time
	Setting the Time Manually
	NTP Client
	Updating the Time Automatically

	Cron—Daemon to Execute Scheduled Commands

	4. Managing Communications
	Telnet / FTP
	DNS
	Web Service—Apache
	Install PHP for Apache Web Server
	IPTABLES
	NAT
	NAT Example
	Enabling NAT at Bootup

	Dial-up Service—PPP
	PPPoE
	NFS (Network File System)
	Setting up the IA260/IA261/IA262/EM-2260 as an NFS Client

	Mail
	SNMP
	OpenVPN

	5. Development Tool Chains
	Linux Tool Chain
	Steps for Installing the Linux Tool Chain
	Compilation for Applications
	On-Line Debugging with GDB


	6. Programmer’s Guide
	Flash Memory Map
	Device API
	RTC (Real Time Clock)
	Buzzer
	UART
	MoxaCAN Programming Guide
	Introduction
	Programming Guide

	Digital I/O

	A. System Commands
	Linux normal command utility collection
	File manager
	Editor
	Network
	Process
	Other
	Moxa special utilities



