
UC-8410/8416/8418/8430-LX
User’s Manual

Sixth Edition, June 2011

www.moxa.com/product

© 2011 Moxa Inc. All rights reserved.
Reproduction without permission is prohibited.

UC-8410/8416/8418/8430 LX
User’s Manual

The software described in this manual is furnished under a license agreement and may be used only in accordance with
the terms of that agreement.

Copyright Notice

Copyright ©2011 Moxa Inc.
All rights reserved.

Reproduction without permission is prohibited.

Trademarks

The MOXA logo is a registered trademark of Moxa Inc.
All other trademarks or registered marks in this manual belong to their respective manufacturers.

Disclaimer

Information in this document is subject to change without notice and does not represent a commitment on the part of
Moxa.

Moxa provides this document as is, without warranty of any kind, either expressed or implied, including, but not limited
to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this manual, or to the
products and/or the programs described in this manual, at any time.

Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no responsibility for
its use, or for any infringements on the rights of third parties that may result from its use.

This product might include unintentional technical or typographical errors. Changes are periodically made to the
information herein to correct such errors, and these changes are incorporated into new editions of the publication.

Technical Support Contact Information

www.moxa.com/support

Moxa Americas
Toll-free: 1-888-669-2872
Tel: +1-714-528-6777
Fax: +1-714-528-6778

 Moxa China (Shanghai office)
Toll-free: 800-820-5036
Tel: +86-21-5258-9955
Fax: +86-10-6872-3958

Moxa Europe
Tel: +49-89-3 70 03 99-0
Fax: +49-89-3 70 03 99-99

 Moxa Asia-Pacific
Tel: +886-2-8919-1230
Fax: +886-2-8919-1231

Table of Contents

1. Introduction .. 1-1
Overview ... 1-2
Software Architecture .. 1-2

Journaling Flash File System (JFFS2) ... 1-3
Software Features ... 1-3

2. Getting Started.. 2-1
Powering on the UC-8410/8416/8418/8430 ... 2-2
Connecting the UC-8410/8416/8418/8430/8430 to a PC ... 2-2

Serial Console ... 2-2
Telnet Console .. 2-2
SSH Console ... 2-3

Configuring the Ethernet Interface .. 2-4
Modifying Network Settings with the Serial Console ... 2-4
Modifying Network Settings over the Network ... 2-6

Test Program─Developing Hello.c ... 2-6
Installing the Tool Chain (Linux) .. 2-6
Checking the Flash Memory Space ... 2-7
Compiling Hello.c .. 2-7
Uploading and Running the “Hello” Program ... 2-8

3. Managing Embedded Linux .. 3-1
System Version Information ... 3-2
Firmware Upgrade .. 3-2

Upgrading the Firmware ... 3-2
Loading Factory Defaults .. 3-4

Enabling and Disabling Daemons .. 3-5
Setting the Run-Level .. 3-7
Setting the System Time ... 3-8

TZ variable ... 3-8
etc/timezone .. 3-8

Adjusting the System Time .. 3-8
Setting the Time Manually .. 3-8
NTP Client .. 3-9
Updating the Time Automatically ... 3-9

Cron—Daemon to Execute Scheduled Commands ... 3-10
Connecting Peripherals .. 3-11

USB Mass Storage ... 3-11
CF Mass Storage ... 3-11

4. Managing Communication ... 4-1
Telnet/FTP ... 4-2
DNS .. 4-2
Web Service—Apache .. 4-3
IPTABLES .. 4-4
NAT .. 4-8

NAT Example .. 4-9
Enabling NAT at Bootup ... 4-9

Dial-up Service—PPP ... 4-10
PPPoE .. 4-13
NFS (Network File System) Client ... 4-15

Setting up the UC-8410/8416/8418/8430/8430 as an NFS Client .. 4-15
Mail .. 4-15
SNMP .. 4-16
OpenVPN ... 4-17
Package Management—ipkg ... 4-24
Audio Playing and Recording .. 4-24

Volume Control ... 4-24
Playing a WAVE File ... 4-25
Recording a WAVE file .. 4-25

5. Programmer's Guide ... 5-1
Flash Memory Map .. 5-2
Linux Tool Chain Introduction ... 5-2
Debugging with GDB ... 5-3
Device API ... 5-4
RTC (Real Time Clock) ... 5-4
Buzzer ... 5-5
WDT (Watch Dog Timer) .. 5-5
Digital I/O.. 5-8
UART .. 5-13

SRAM .. 5-15
Make File Example .. 5-16
Moxa CAN Programming Guide ... 5-17

Introduction.. 5-17
Programming Guide ... 5-17

Software Lock .. 5-19
Qt-embedded ... 5-20

Compile and Test the QT Program on an X86 Machine .. 5-21
Set up Qt development .. 5-21
Cross-compile the Qt application and run with Dual-display .. 5-21
Upload the binary to target and run it with following command ... 5-22

A. Firmware Upgrade Procedure .. A-1
B. System Commands .. B-1

Linux Normal Command Utility Collection ... B-1
File Manager ... B-1
Editor .. B-1
Network ... B-2
Process .. B-2
Modules ... B-2
Other ... B-2
Special Moxa Utilities ... B-3

1
1. Introduction

Welcome to the Moxa UC-8400 Series of RISC-based communication platforms.

The UC-8410/8416/8418/8430 embedded computer comes with 8 RS-232/422/485 serial ports, 3 Ethernet
ports, 4 digital input channels, 4 digital output channels, (12 digital input channels and 12 digital output
channels for UC-8418), 8 10/100 Mbps switch ports (UC-8416 only), a CompactFlash socket, and 2 USB 2.0
ports. In addition, the UC-8430 comes with 2 VGA outputs, making it the perfect solution for applications that
require HMI for field site monitoring.

The UC-8410/8416/8418/8430 computer uses the Intel XScale IXP435 533 MHz RISC CPU. This powerful
computing engine supports several useful communication functions, but will not generate too much heat. The
built-in 16 MB NORFlash ROM can be used to store the operating system, and 256 MB SDRAM gives you enough
memory to run your application software directly on the UC-8410/8416/8418/8430. Moreover, the 32 MB
NAND Flash provides the capacity for data storage.

The UC-8410/8416/8418/8430 computer supports RS-232/422/485 serial ports, digital I/O, and has three LAN
ports, making it ideal as a communication platform for industrial applications that require network redundancy.

Pre-installed with the Linux 2.6 platform, the UC-8410/8416/8418/8430 provides an open software operating
system for software program development. Software written for a desktop PC can be easily ported to the
UC-8410/8416/8418/8430 platform by using a GNU cross compiler, without needing to modify the code. This
makes the UC-8410/8416/8418/8430 an optimal solution for your industrial applications with the minimal cost
and effort.

In addition to the standard model, a wide temperature version (-40 to 75°C) of the UC-8410/8416/8418/8430
is also available for use in harsh industrial environments.

The following topics are covered in this chapter:

 Overview

 Software Architecture

 Journaling Flash File System (JFFS2)

 Software Features

UC-8410/8416/8418/8430 Introduction

 1-2

Overview
The UC-8410/8416/8418/8430 computer, which features a RISC CPU, RAM memory, serial ports for
connecting RS-232/422/485 devices, and 3 10/100 Mbps Ethernet ports, is designed for embedded
applications.

The UC-8410/8416/8418/8430 uses an Intel XScale IXP435 533 Mhz RISC CPU. Unlike the x86 CPU, which
uses a CISC design, the RISC architecture and modern semiconductor technology provide this computer with
a powerful computing engine and communication functions, but without generating a lot of heat. The built-in 16
MB NOR Flash ROM can be used to store the operating system, and 256 MB of SDRAM gives you enough
memory to run your application software directly on the UC-8410/8416/8418/8430. Moreover, the 32 MB
NAND Flash provides the capacity for data storage. In addition, the network capability provided by the 3 LAN
ports built into the RISC CPU combined with the ability to control connected serial devices makes the
UC-8410/8416/8418/8430/8430 an ideal communication platform for data acquisition and industrial control
applications.

The UC-8410/8416/8418/8430’s pre-installed open source Linux operating system can run software written for
desktop PCs, provided the software is ported to the computer with a GNU cross compiler. The process is easy,
straightforward, and your programmer will not need to modify the source code. The OS, device drivers (e.g.,
Ethernet, SRAM, watchdog, and Buzzer control) and your own applications, can all be stored in the NOR Flash
memory.

Software Architecture
The Linux operating system that comes pre-installed on the UC-8410/8416/8418/8430/8430 follows the
standard Linux architecture, making it easy to run programs that follow the POSIX standard. Program porting
is done with the GNU Tool Chain provided by Moxa. In addition to Standard POSIX APIs, device drivers for the
buzzer, SRAM and watchdog controls, and UART are also included in the Linux OS.

The UC-8410/8416/8418/8430’s built-in Flash ROM is divided into Boot Loader, Linux Kernel, Root File
System, and User Root File System partitions.

In order to prevent user applications from crashing the Root File System, the UC-8410/8416/8418/8430/8430
uses a specially designed Root File System with Protected Configuration for emergency use. This Root
File System comes with serial and Ethernet communication capability for users to load the Factory Default
Image file. The user directory saves the user’s settings and application.

To improve system reliability, the UC-8410/8416/8418/8430/8430 has a built-in mechanism that prevents the
system from crashing. When the Linux kernel boots up, the kernel will mount the root file system for read only,

UC-8410/8416/8418/8430 Introduction

 1-3

and then enable services and daemons. During this time, the kernel will start searching for system
configuration parameters via rc or inittab.

Normally, the kernel uses the Root File System to boot up the system. The Root File System is protected, and
cannot be changed by the user, providing a “safe” zone.

For more information about memory map and programming, refer to Chapter 5, “Programmer’s Guide.”

Journaling Flash File System (JFFS2)
The User Root File System in the flash memory is formatted with the Journaling Flash File System (JFFS2).
The formatting process places a compressed file system in the flash memory, transparent to the user.

The Journaling Flash File System (JFFS2), which was developed by Axis Communications in Sweden, puts a file
system directly on the flash, instead of emulating a block device. It is designed for use on flash-ROM chips and
recognizes the special write requirements of a flash-ROM chip. JFFS2 implements wear-leveling to extend the
life of the flash disk, and stores the flash directory structure in the RAM. A log-structured file system is
maintained at all times. The system is always consistent, even if it encounters crashes or improper
power-downs, and does not require fsck (file system check) on boot-up.

JFFS2 is the newest version of JFFS. It provides improved wear-leveling and garbage-collection performance,
improved RAM footprint and response to system-memory pressure, improved concurrency and support for
suspending flash erases, marking of bad sectors with continued use of the remaining good sectors (which
enhances the write-life of the devices), native data compression inside the file system design, and support for
hard links.

The key features of JFFS2 are:

• Targets the Flash ROM directly

• Robustness

• Consistency across power failures

• No integrity scan (fsck) is required at boot time after normal or abnormal shutdown

• Explicit wear leveling

• Transparent compression

Although JFFS2 is a journaling file system, this does not preclude the loss of data. The file system will remain
in a consistent state after power failures and will always be mountable. However, if the board is powered down
during a write then the incomplete write will be rolled back on the next boot, but writes that have already been
completed will not be affected.

Additional information about JFFS2 is available on the following websites:
http://sources.redhat.com/jffs2/jffs2.pdf
http://developer.axis.com/software/jffs/
http://www.linux-mtd.infradead.org/

Software Features
Linux
Kernel Version: 2.6.23
Protocol Stack: TCP, UDP, IPv4, SNMP V1, ICMP, ARP, HTTP, CHAP, PAP, SSH 1.0/2.0, SSL, DHCP, NTP, NFS,
Telnet, FTP, PPP, PPPoE, OpenVPN
File System: JFFS2, NFS, Ext2, Ext3
System Utilities: bash, busybox, tinylogin, telnet, ftp, ssh, scp
telnetd: telnet Server daemon
ftpd: FTP server daemon
sshd: secure shell server
Apache: web server daemon, supporting PHP and XML

http://sources.redhat.com/jffs2/jffs2.pdf�
http://developer.axis.com/software/jffs/�
http://www.linux-mtd.infradead.org/�

UC-8410/8416/8418/8430 Introduction

 1-4

openvpn: virtual private network service manager
pppd: dial in/out over serial port daemon
snmpd: snmpd agent daemon
openssl: open SSL
Application Development Software: Moxa Linux API device control
Linux Tool Chain:
Firmware v1.X:
• GCC (V4.2.1): C/C++ PC Cross Compiler
• Glibc (V2.2.5): POSIX standard C Library
Firmware v2.X:
• GCC (V4.4.2): C/C++ PC Cross Compiler
• Glibc (V2.10.1): POSIX standard C Library
Software Encryption Lock:
BINEncryptor: Encryption tool for binary files (based on patented Moxa technology)

2
2. Getting Started

In this chapter, we explain how to connect the UC-8410/8416/8418/8430, turn on the power, and then get
started with programming and using other functions.

The following topics are covered in this chapter:

 Powering on the

 Connecting the UC-8410/8416/8418/8430/8430 to a PC

 Serial Console

 Telnet Console

 SSH Console

 Configuring the Ethernet Interface

 Modifying Network Settings with the Serial Console

 Modifying Network Settings over the Network

 Test Program─Developing Hello.c

 Installing the Tool Chain (Linux)

 Checking the Flash Memory Space

 Compiling Hello.c

 Uploading and Running the “Hello” Program

UC-8410/8416/8418/8430 Getting Started

 2-2

Powering on the UC-8410/8416/8418/8430
Connect the SG wire to the Shielded Contact located in the upper left corner of the UC-8410/8416/8418/8430,
and then power on the computer by connecting it to the power adaptor. It takes about 30 to 60 seconds for the
system to boot up. Once the system is ready, the Ready LED will light up.

ATTENTION

After connecting the UC-8410/8416/8418/8430/8430 to the power supply, it will take about 16 seconds for
the operating system to boot up. The green Ready LED will not turn on until the operating system is ready.

Connecting the
UC-8410/8416/8418/8430/8430 to a PC

There are two ways to connect the UC-8410/8416/8418/8430/8430 to a PC: directly through the serial console
port, or by Telnet over the network. For the UC-8430, you can connect the display with the display cable. Once
you turn on the power, you will be able to access the computer and conduct additional configurations.

Serial Console
The serial console port gives users a convenient way of connecting to the UC-8410/8416/8418/8430’s console
utility. This method is particularly useful when using the computer for the first time. The signal is transmitted
over a direct serial connection, so you do not need to know either of its 3 IP addresses in order to connect to
the UC-8410/8416/8418/8430.

Use the serial console port settings shown below.

Baudrate 115200 bps

Parity None

Data bits 8

Stop bits 1

Flow Control None

Terminal VT100

Once the connection is established, you can start using UC-8410/8416/8418/8430.

Telnet Console
If you know at least one of the IP addresses and netmasks, you can use Telnet to connect to the
UC-8410/8416/8418/8430’s console utility. The default IP address and Netmask for each of the ports are given
below:

 Default IP Address Netmask
LAN 1* 192.168.3.127 255.255.255.0

LAN 2 192.168.4.127 255.255.255.0

LAN 3 192.168.5.127 255.255.255.0

*Please note that the LAN1 of the UC-8430 uses DHCP for both IP Address and Netmask.

Use a cross-over Ethernet cable to connect directly from your PC to the UC-8410/8416/8418/8430. You should
first modify your PC’s IP address and netmask so that your PC is on the same subnet as one of the
UC-8410/8416/8418/8430’s LAN ports. For example, if you connect to LAN 1, you can set your PC’s IP address
to 192.168.3.126 and netmask to 255.255.255.0. If you connect to LAN 2, you can set your PC’s IP address to
192.168.4.126 and netmask to 255.255.255.0.

UC-8410/8416/8418/8430 Getting Started

 2-3

To connect to a hub or switch connected to your local LAN, use a straight-through Ethernet cable. The default
IP addresses and netmasks are shown above. To log in, type the Login name and password as requested. The
default values are both root:

Login: root
Password: root

You can proceed with configuring network settings of the target computer when you reach the bash command
shell. Configuration instructions are given in the next section.

ATTENTION

Serial Console Reminder
Remember to choose VT100 as the terminal type. Use cable CBL-4PINDB9F-100, which comes with the
UC-8410/8416/8418/8430, to connect to the serial console port.
Telnet Reminder
When connecting to the UC-8410/8416/8418/8430/8430 over a LAN, you must configure your PC’s Ethernet
IP address to be on the same subnet as the UC-8410/8416/8418/8430/8430 you wish to connect to. If you do
not get connected on the first try, re-check the IP settings, and then unplug and re-plug the
UC-8410/8416/8418/8430’s power cord.

SSH Console
The UC-8410/8416/8418/8430/8430 supports an SSH console to provide users with better security options.

Windows Users

Click on the link http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html to download PuTTY
(free software) to set up an SSH console for the UC-8410/8416/8418/8430/8430 in a Windows environment.
The following figure shows a simple example of the configuration that is required.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html�

UC-8410/8416/8418/8430 Getting Started

 2-4

Linux Users

From a Linux machine, use the “ssh” command to access the UC-8410/8416/8418/8430’s Console utility via
SSH.

#ssh 192.168.3.127

Select yes to complete the connection.

[root@bee_notebook root]# ssh 192.168.3.127

The authenticity of host ‘192.168.3.127 (192.168.3.127)’ can’t be established.

RSA key fingerprint is 8b:ee:ff:84:41:25:fc:cd:2a:f2:92:8f:cb:1f:6b:2f.

Are you sure you want to continue connection (yes/no)? yes_

NOTE SSH provides better security compared to Telnet for accessing the UC-8410/8416/8418/8430’s console utility
over the network.

Configuring the Ethernet Interface
The network settings of the UC-8410/8416/8418/8430/8430 can be modified with the serial console, or online
over the network.

Modifying Network Settings with the Serial Console
In this section, we use the serial console to configure network settings of the target computer.

Follow the instructions given in a previous section to access the console utility of the target computer via the
serial console port, and then type #cd /etc/network to change directory.

root@Moxa:# cd /etc/network/

root@Moxa:/etc/network/#

Type #vi interfaces to edit the network configuration file with vi editor. You can configure the
UC-8410/8416/8418/8430’s Ethernet ports for static or dynamic (DHCP) IP addresses.

UC-8410/8416/8418/8430 Getting Started

 2-5

Static IP addresses:

As shown below, 3 network addresses need to be modified: address, network, netmask, and broadcast.
The default IP addresses are 192.168.3.127 for LAN1, 192.168.4.127 for LAN2, and 192.168.5.127 for LAN3,
with default netmasks of 255.255.255.0.

We always want the loopback interface.

auto eth0 eth1 eth2 lo

iface lo inet loopback

embedded ethernet LAN1

iface eth0 inet static

 address 192.168.3.127

 network 192.168.3.0

 netmask 255.255.255.0

 broadcast 192.168.3.255

embedded ethernet LAN2

iface eth1 inet static

 address 192.168.4.127

 network 192.168.4.0

 netmask 255.255.255.0

 broadcast 192.168.4.255

embedded ethernet LAN3

iface eth2 inet static

 address 192.168.5.127

 network 192.168.5.0

Dynamic IP Addresses:

By default, the UC-8410/8416/8418/8430 is configured for “static” IP addresses. To configure LAN ports to
request an IP address dynamically, replace static with dhcp and then delete the address, network, netmask,
and broadcast lines.

Default Setting for LAN1 Dynamic Setting using DHCP
iface eth0 inet static
 address 192.168.3.127
 network: 192.168.3.0
 netmask 255.255.255.0
 broadcast 192.168.3.255

iface eth0 inet dhcp

*Please note that the default value for LAN1 of the UC-8430 is DHCP.

Auto eth0 eth1 lo

iface lo inet loopback

iface eth0 inet dhcp

iface eth1 inet dhcp

After the boot settings of the LAN interface have been modified, issue the following command to activate the
LAN settings immediately:

#/etc/init.d/networking restart

ATTENTION

After changing the IP settings, use the networking restart command to activate the new IP address.

UC-8410/8416/8418/8430 Getting Started

 2-6

Modifying Network Settings over the Network
IP settings can be activated over the network, but the new settings will not be saved to the flash ROM without
modifying the file /etc/network/interfaces.

For example, type the command #ifconfig eth0 192.168.1.1 to change the IP address of LAN1 to
192.168.1.1.

root@Moxa:# ifconfig eth0 192.168.1.1

root@Moxa:/etc/network/#

Test Program─Developing Hello.c
1. Connect the UC-8410/8416/8418/8430/8430 to a Linux PC.
2. Install the Tool Chain (GNU Cross Compiler & glibc).
3. Set the cross compiler and glibc environment variables.
4. Code and compile the program.
5. Download the program to the UC-8410/8416/8418/8430/8430 via

FTP or NFS.
6. Debug the program

 If bugs are found, return to Step 4.
 If no bugs are found, continue with Step 7

7. Back up the user directory (distribute the program to additional
UC-8410/8416/8418/8430/8430 units if needed).

Installing the Tool Chain (Linux)
The PC must have the Linux operating system pre-installed before installing the
UC-8410/8416/8418/8430/8430 GNU Tool Chain. Redhat 7.3/8.0, Fedora core, and compatible versions are
recommended. The Tool Chain requires about 600 MB of hard disk space on your PC. The
UC-8410/8416/8418/8430/8430 Tool Chain software is located on the UC-8410/8416/8418/8430/8430 CD. To
install the Tool Chain, insert the CD into your PC and then issue the following commands:

With v1.x firmware:

#mount /dev/cdrom /mnt/cdrom#/mnt/cdrom/tool-chain/Linux/arm-linux_2.3.sh

With v2.x firmware:

#mount /dev/cdrom
/mnt/cdrom#/mnt/cdrom/tool-chain/Linux/arm-linux_3.0_Build_YYMMDDHH.sh

The Tool Chain will be installed automatically on your Linux PC within a few minutes. Before compiling the
program, be sure to set the following path first, since the Tool Chain files, including the compiler, link, library,
and include files, are located in this directory.

With v1.x firmware and arm-linux 2.x.sh:

PATH=/usr/local/arm-linux/bin:$PATH

With v2.x firmware and arm-linux 2.x.sh and arm-linux_3.0_Build_YYMMDDHH.sh:

PATH=/usr/local/arm-linux-4.4.2/bin:$PATH

Setting the path allows you to run the compiler from any directory.

UC-8410/8416/8418/8430 Getting Started

 2-7

ATTENTION

If you have an older version of Linux Tool Chain on your Moxa embedded computer (such as the W300 Series,
IA240/241, and UC-7112-LX Plus) and would like to install the new Linux Tool Chain for the
UC-8410/8416/8418/8430, the old Linux Tool Chain files will be immediately overwritten, and the programs
compiled by this new Tool Chain may not work on your old models. We strongly suggest you rename the
directory of the old Linux Tool Chain before installing the new one if you would like to use the old Linux Tool
Chain for other embedded computers.

Checking the Flash Memory Space
The UC-8410/8416/8418/8430/8430 uses a specially designed root file system. Only /tmp, /etc, /home,
/usr/local/bin, /usr/local/sbin, /usr/local/libexec, and /usr/local/lib directories are writable. Others are
read-only. The writable directories are mounted on /dev/mtdblock4. If the /dev/mtdblock4 is full, you will not
be able to save data to the Flash ROM. Use the following command to calculate the amount of “Available” flash
memory:

/>df –h

root@Moxa:/# df -h

Filesystem Size Used Available Use% Mounted on

rootfs 13.4M 9.8M 3.5M 74% /

/dev/root 13.4M 9.8M 3.5M 74% /

/dev/ram15 1.7M 19.0k 1.6M 1% /dev

/dev/ram0 499.0k 18.0k 456.0k 4% /var

/dev/mtdblock4 32.0M 1.9M 30.1M 6% /tmp

/dev/mtdblock4 32.0M 1.9M 30.1M 6% /home

/dev/mtdblock4 32.0M 1.9M 30.1M 6% /etc

tmpfs 252.5M 0 252.5M 0% /dev/shm

/dev/sdb1 483.4M 57.9M 425.5M 12% /var/sdb

root@Moxa:/#

If there isn’t enough “Available” space for your application, you will need to delete some existing files. To do
this, connect your PC to the UC-8410/8416/8418/8430/8430 with the console cable, and then use the console
utility to delete the files from the UC-8410/8416/8418/8430’s flash memory.

Compiling Hello.c
The CD contains several sample programs. Here we use Hello.c to show you how to compile and run your
applications. Type the following commands from your PC to copy the files used for this example from the CD to
your computer’s hard drive:

cd /tmp/
mkdir example
cp –r /mnt/cdrom/example/* /tmp/example

To compile the program, go to the hello subdirectory and issue the following commands:

#cd example/hello
#make

You should receive the following response:

UC-8410/8416/8418/8430 Getting Started

 2-8

[root@localhost hello]# make

xscale-linux-gcc –o hello-release hello.c

xscale-linux-strip –s hello-release

xscale-linux-gcc –ggdb -o hello-debug hello.c

[root@localhost hello]# _

Next, execute hello.exe to generate hello-release and hello-debug, which are described below:

hello-release—an IXP platform execution file (created specifically to run on the UC-8410/8416/8418/8430)

hello-debug—an IXP platform GDB debug server execution file (see Chapter 5 for details about the GDB
debug tool).

ATTENTION

Be sure to type the #make command from within the /tmp/example/hello directory, since the
UC-8410/8416/8418/8430’s tool chain puts a specially designed Makefile in that directory. This special
Makefile uses the xscale-linux-gcc compiler to compile the hello.c source code for the Xscale environment. If
you type the #make command from any other directory, Linux will use the x86 compiler (for example, cc or
gcc). Refer to Chapter 5 to see a Make file example.

Uploading and Running the “Hello” Program
Use the following command to upload hello-release to the UC-8410/8416/8418/8430/8430 via FTP.

From the PC, type:

#ftp 192.168.3.127

Use the bin command to set the transfer mode to binary mode, and then put command to initiate the file
transfer:

ftp> cd /home
ftp> bin
ftp> put hello-release

From the UC-8410/8416/8418/8430, type:

chmod +x /home/hello-release
./home/hello-release

The word Hello will be printed on the screen.

root@Moxa:~# ./home/hello-release

Hello

3
3. Managing Embedded Linux

This chapter includes information about version control, deployment, updates, and peripherals.

The following topics are covered in this chapter:

 System Version Information

 Firmware Upgrade

 Upgrading the Firmware

 Loading Factory Defaults

 Enabling and Disabling Daemons

 Setting the Run-Level

 Setting the System Time

 TZ variable

 /etc/timezone

 Adjusting the System Time

 Setting the Time Manually

 NTP Client

 Updating the Time Automatically

 Cron—Daemon to Execute Scheduled Commands

 Connecting Peripherals

 USB Mass Storage

 CF Mass Storage

UC-8410/8416/8418/8430 Managing Embedded Linux

 3-2

System Version Information
To determine the hardware capability of your UC-8410/8416/8418/8430/8430 and what kind of software
functions are supported, check which version of the firmware your UC-8410/8416/8418/8430/8430 is running.
Contact Moxa to determine the hardware version. You will need the Production S/N (Serial number), which
is located on the UC-8410/8416/8418/8430’s bottom label.

To check the kernel version, type:

#kversion

 192.168.3.127 – PuTTY

root@Moxa:~# kversion

UC-8410/8416/8418/8430 version 1.0

root@Moxa:~#

root@Moxa:/# kversion -a

UC-8410/8416/8418/8430 version 1.0 Build 08091716

root@Moxa:~#

Firmware Upgrade

Upgrading the Firmware
The UC-8410/8416/8418/8430’s kernel, and root file system are combined into one firmware file, which can be
downloaded from Moxa’s website (www.moxa.com). The name of the file has the form
FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm, with “a.b.c” indicating the firmware version and
YYMMDDHH indicating the build date. To upgrade the firmware, download the firmware file to a PC, and then
transfer the file to the UC-8410/8416/8418/8430/8430 unit via a serial console or Telnet console connection.

ATTENTION

Upgrading the firmware will erase all data on the Flash ROM
If you are using the ramdisk to store code for your applications, beware that updating the firmware will erase
all of the data on the Flash ROM. You should back up your application files and data before updating the
firmware.

Since different Flash disks have different sizes, it’s a good idea to check the size of your Flash disk before
upgrading the firmware, or before using the disk to store your application and data files. Use the #df –h
command to list the size of each memory block, and how much free space is available in each block.

 192.168.3.127 – PuTTY

root@Moxa:/# df -h

Filesystem Size Used Available Use% Mounted on

rootfs 13.4M 9.8M 3.5M 74% /

/dev/root 13.4M 9.8M 3.5M 74% /

/dev/ram15 1.7M 19.0k 1.6M 1% /dev

/dev/ram0 499.0k 18.0k 456.0k 4% /var

/dev/mtdblock4 32.0M 1.9M 30.1M 6% /tmp

/dev/mtdblock4 32.0M 1.9M 30.1M 6% /home

/dev/mtdblock4 32.0M 1.9M 30.1M 6% /etc

tmpfs 252.5M 0 252.5M 0% /dev/shm

/dev/sdb1 483.4M 57.9M 425.5M 12% /var/sdb

root@Moxa:/# /dev/s

UC-8410/8416/8418/8430 Managing Embedded Linux

 3-3

root@Moxa:/# upramdisk

root@Moxa:/# df -h

Filesystem Size Used Available Use% Mounted on

/dev/mtdblock2 14.0M 11.2M 2.8M 80% /

/dev/ram15 1.7M 18.0k 1.6M 1% /dev

/dev/ram0 499.0k 34.0k 440.0k 7% /var

/dev/mtdblock3 15.8M 2.6M 13.1M 17% /tmp

/dev/mtdblock3 15.8M 2.6M 13.1M 17% /home

/dev/mtdblock3 15.8M 2.6M 13.1M 17% /etc

/dev/ram1 38.7M 13.0k 36.7M 0% /mnt/ramdisk

root@Moxa:/# cd /mnt/ramdisk/

root@Moxa:/mnt/ramdisk#

The following instructions give the steps required to save the firmware file to the UC-8410/8416/8418/8430’s
RAM disk, and then upgrade the firmware.

1. Type the following commands to enable the RAM disk:
#upramdisk
#cd /mnt/ramdisk

2. Type the following commands to use the UC-8410/8416/8418/8430’s built-in FTP client to transfer the

firmware file (FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm) from the PC to the
UC-8410/8416/8418/8430:
/mnt/ramdisk> ftp <destination PC’s IP>
Login Name: xxxx
Login Password: xxxx
ftp> bin
ftp> get FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm

 192.168.3.127 – PuTTY

root@Moxa:/mnt/ramdisk# ftp 192.168.3.193

Connected to 192.168.3.193 (192.168.3.193).

220 TYPSoft FTP Server 1.10 ready…

Name (192.168.3.193:root): root

331 Password required for root.

Password:

230 User root logged in.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> cd newsw

250 CWD command successful. “/C:/ftproot/newsw/” is current directory.

ftp> bin

200 Type set to I.

ftp> ls

200 Port command successful.

150 Opening data connection for directory list.

drw-rw-rw- 1 ftp ftp 0 Nov 30 10:03 .

drw-rw-rw- 1 ftp ftp 0 Nov 30 10:03 .

-rw-rw-rw- 1 ftp ftp 12904012 Nov 29 10:24

FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm

226 Transfer complete.

ftp> get FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm

local: FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm remote:

FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm

200 Port command successful.

UC-8410/8416/8418/8430 Managing Embedded Linux

 3-4

150 Opening data connection for FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm

226 Transfer complete.

12904012 bytes received in 2.17 secs (5925.8 kB/s)

ftp>

3. Next, use the upgradehfm command to upgrade the kernel and root file system:

#upgradehfm FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm

 192.168.3.127 – PuTTY

root@Moxa:/mnt/ramdisk# upgradehfm FWR_uc8400_Va.b.c_Build_YYMMDDHH.hfm

Moxa UC-8400 Upgrade firmware utility version 1.0.

To check source firmware file context.

The source firmware file conext is OK.

This step will upgrade firmware. All the data on flash will be destroyed.

Do you want to continue? (Y/N) :

Now upgrade the file [redboot].

Format MTD device [/dev/mtd0] ...

MTD device [/dev/mtd0] erase 128 Kibyte @ 60000 -- 100% complete.

Wait to write file ...

Completed 100%

Now upgrade the file [kernel].

Format MTD device [/dev/mtd1] ...

MTD device [/dev/mtd1] erase 128 Kibyte @ 1a0000 -- 100% complete.

Wait to write file ...

Completed 100%

Now upgrade the file [root-file-system].

Format MTD device [/dev/mtd2] ...

MTD device [/dev/mtd2] erase 128 Kibyte @ e00000 -- 100% complete.

Wait to write file ...

Completed 100%

Now upgrade the file [directory].

Format MTD device [/dev/mtd5] ...

MTD device [/dev/mtd5] erase 128 Kibyte @ 20000 -- 100% complete.

Wait to write file ...

Completed 100%

Now upgrade the new configuration file.

Upgrade the firmware is OK. Rebooting

Loading Factory Defaults
Press the reset button for more than 5 seconds to force the system to load the factory default settings. All files
in the /home, /etc, /usr/local/bin, /usr/local/sbin, /usr/local/lib, /usr/local/libexec, and /tmp directories will be
deleted. While pressing the reset button, during the first 5 seconds the ready-light will blink once each second.
If you continue pressing the button after 5 seconds have passed, the ready-light will turn off, indicating that the
factory defaults have been loaded.

UC-8410/8416/8418/8430 Managing Embedded Linux

 3-5

ATTENTION

Reset-to-default will erase all data stored in /dev/mtdblock4
If you have stored data in the writable partition, you will need to back up these files before resetting the
system to default. On the UC-8410/8416/8418/8430, the directories /tmp, /etc, /usr/local/bin,
/usr/local/sbin, /usr/local/lib, /usr/local/libexec, and /home are mounted on /dev/mtdblock4. This means
that all of the data stored in these directories will be destroyed after resetting to default.

Enabling and Disabling Daemons
The following daemons are enabled when the UC-8410/8416/8418/8430/8430 boots up for the first time.

• snmpd SNMP Agent daemon
• telnetd Telnet Server / Client daemon
• inetd Internet Daemons
• ftpd FTP Server / Client daemon
• sshd Secure Shell Server daemon
• httpd Apache WWW Server daemon

1. Type the command “ps” to list all processes currently running.

 192.168.3.127 – PuTTY

root@Moxa:~# cd /etc

root@Moxa:/etc# ps

 PID USER VSZ STAT COMMAND

 1 root 1316 S init [3]

 2 root 0 SW< [kthreadd]

 3 root 0 SW< [ksoftirqd/0]

 4 root 0 SW< [events/0]

 5 root 0 SW< [khelper]

 30 root 0 SW< [kblockd/0]

 33 root 0 SW< [kseriod]

 52 root 0 SW [pdflush]

 53 root 0 SW [pdflush]

 54 root 0 SW< [kswapd0]

 55 root 0 SW< [aio/0]

 613 root 0 SW< [mtdblockd]

 652 root 0 SW< [ixp400_eth time]

 655 root 0 SW< [ixp400_eth time]

 657 root 0 DW< [EthMac Recovery]

 667 root 0 SW< [rpciod/0]

 728 root 0 SW< [khubd]

 773 root 0 SW< [scsi_eh_0]

 774 root 0 SW< [usb-storage]

 788 root 0 SWN [jffs2_gcd_mtd4]

 814 root 0 SW [ixp400 eth0]

 820 root 0 SW [ixp400 eth1]

 834 root 1360 S /bin/inetd

 858 root 12536 S /usr/bin/httpd -k start -d /etc/apache

 861 bin 1300 S /bin/portmap

 867 root 2412 S /bin/sh --login

 872 root 1360 S /bin/snmpd -c public

 878 root 3508 S /bin/sshd -f /etc/ssh/sshd_config

UC-8410/8416/8418/8430 Managing Embedded Linux

 3-6

 881 root 1292 S /bin/reportip

 883 nobody 12560 S /usr/bin/httpd -k start -d /etc/apache

 884 nobody 12560 S /usr/bin/httpd -k start -d /etc/apache

 885 nobody 12560 S /usr/bin/httpd -k start -d /etc/apache

 886 nobody 12560 S /usr/bin/httpd -k start -d /etc/apache

 887 nobody 12560 S /usr/bin/httpd -k start -d /etc/apache

2. To run a private daemon, edit the file rc.local, as follows:

#cd /etc/rc.d
#vi rc.local

 192.168.3.127 – PuTTY

root@Moxa:~# cd /etc/rc.d

root@Moxa:/etc/rc.d# vi rc.local

3. Next, use vi editor to edit your application program. We use the sample program tcps2-release, and set

it to run in the background.

 192.168.3.127 – PuTTY

!/bin/sh

Add you want to run daemon

/root/tcps2-release &

4. The following daemons will be enabled after you reboot the system.

 192.168.3.127 – PuTTY

root@Moxa:~# ps –ef

PID USER VSZ STAT COMMAND

 1 root 1316 S init [3]

 2 root 0 SW< [kthreadd]

 3 root 0 SW< [ksoftirqd/0]

 4 root 0 SW< [events/0]

 5 root 0 SW< [khelper]

 30 root 0 SW< [kblockd/0]

 33 root 0 SW< [kseriod]

 52 root 0 SW [pdflush]

 53 root 0 SW [pdflush]

 54 root 0 SW< [kswapd0]

 55 root 0 SW [aio/0]

 613 root 0 SW [mtdblockd]

652 root 0 SW [ixp400_eth time]

 655 root 0 SW [ixp400_eth time]

 657 root 0 DW [Ethmac Recovery]

 666 root 0 SW [rpciod/0]

 727 root 0 SW< [khubd]

 772 root 0 SW< [scsi_eh_0]

 773 root 0 SW< [usb-storage]

 788 root 0 SWN< [jffs2_gcd_mtd4]

809 root 0 SW [ixp400 eth0]

815 root 0 SW [ixp400 eth1]

UC-8410/8416/8418/8430 Managing Embedded Linux

 3-7

 829 root 1360 S /bin/inetd

 832 bin 1300 S /bin/portmap

 838 root 2428 S /bin/sh --login

 843 root 1360 S /bin/snmpd -c public

867 root 3508 S /bin/sshd -f/etc/ssh/sshd_config

873 root 7284 S /usr/bin/httpd -k start -d/etc/apache

876 root 1292 S /bin/reportip

878 nobody 7308 S /usr/bin/httpd -k start -d/etc/apache

879 nobody 7308 S /usr/bin/httpd -k start -d/etc/apache

880 nobody 7308 S /usr/bin/httpd –k start –d/etc/apache

881 nobody 7308 S /usr/bin/httpd –k start –d/etc/apache

882 nobody 7380 S /usr/bin/httpd –k start –d/etc/apache

883 root 1264 S /root/tcps2-release

896 root 2156 R ps

root@Moxa:~#

Setting the Run-Level
In this section, we outline the steps you should take to set the Linux run-level and execute requests. Use the
following command to enable or disable settings:

 192.168.3.127 – PuTTY

root@Moxa:/ect/rc.d/rc3.d# ls

S20snmpd S55ssh S99showreadyled

S25nfs-server S99rmnologin

root@Moxa:/etc/rc.d/rc3.d#

#cd /etc/rc.d/init.d

Edit a shell script to execute /root/tcps2-release and save to tcps2 as an example.

#cd /etc/rc.d/rc3.d
#ln –s /etc/rc.d/init.d/tcps2 S60tcps2

SxxRUNFILE stands for
 S: start the run file while linux boots up.
 xx: a number between 00-99. Smaller numbers have a higher priority.
 RUNFILE: the file name.

 192.168.3.127 – PuTTY

root@Moxa:/ect/rc.d/rc3.d# ls

S20snmpd S55ssh S99showreadyled

S25nfs-server S99rmnologin

root@Moxa:/ect/rc.d/rc3.d# ln –s /root/tcps2-release S60tcps2

root@Moxa:/ect/rc.d/rc3.d# ls

S20snmpd S55ssh S99showreadyled

S25nfs-server S99rmnologin S60tcps2

root@Moxa:/etc/rc.d/rc3.d#

KxxRUNFILE stands for
 K: start the run file while Linux shuts down or halts.
 xx: a number between 00-99. Smaller numbers have a higher priority.
 RUNFILE: the file name.

UC-8410/8416/8418/8430 Managing Embedded Linux

 3-8

To remove the daemon, use the following command to remove the run file from /etc/rc.d/rc3.d:

#rm –f /etc/rc.d/rc3.d/S60tcps2

Setting the System Time
There are two ways to support the timezone configuration on a Moxa embedded computer. One is using the TZ
variable. The other is using /etc/localtime.

TZ variable
If you would like to use TZ variable, link to the following URL for all configurations and settings.

http://www.mkssoftware.com/docs/man5/timezone.5.asp

/etc/timezone
The local timezone is stored in /etc/localtime and is used by GNU Library for C (glibc) if the TZ environment
variable is not set. This file is either a copy of /usr/share/zoneinfo/ tree or a symbolic link to it.

The UC-8410/8416/8418/8430/8430 does not provide /usr/share/zoneinfo/ files, so you need to copy a time
zone information file to the UC-8410/8416/8418/8430/8430 and write over the original local time file.

1. The /usr/share/zoneinfo folder on a PC that is running standard Linux contains several time zone
information files.

2. Copy the time zone file that you want to use to the UC-8410/8416/8418/8430/8430 to overwrite the
original /etc/localtime file.

3. Type a date to check if the new time zone appears.

Adjusting the System Time

Setting the Time Manually
The UC-8410/8416/8418/8430/8430 has two time settings. One is the system time, and the other is the RTC
(Real Time Clock) time kept by the UC-8410/8416/8418/8430’s hardware. Use the #date command to query
the current system time or set a new system time. Use #hwclock to query the current RTC time or set a new
RTC time.

Use the following command to query the system time:
#date

Use the following command to query the RTC time:
#hwclock

Use the following command to set the system time:
#date MMDDhhmmYYYY

MM = Month
DD = Date
hhmm = hour and minute
YYYY = Year

Use the following command to set the RTC time:
#hwclock –w

Write current system time to RTC

The following figure illustrates how to update the system time and set the RTC time.

http://www.mkssoftware.com/docs/man5/timezone.5.asp�

UC-8410/8416/8418/8430 Managing Embedded Linux

 3-9

 192.168.3.127 – PuTTY

root@Moxa:~# date

Fri Jun 23 23:30:31 CST 2000

root@Moxa:~# hwclock

Fri Jun 23 23:30:35 2000 -0.557748 seconds

root@Moxa:~# date 070910002006

Sun Jul 9 10:00:00 CST 2006

root@Moxa:~# hwclock –w

root@Moxa:~# date ; hwclock

Sun Jul 9 10:01:07 CST 2006

Sun Jul 9 10:01:08 2006 -0.933547 seconds

root@Moxa:~#

NTP Client
The UC-8410/8416/8418/8430/8430 has a built-in NTP (Network Time Protocol) client that is used to initialize
a time request to a remote NTP server. Use #ntpdate <NTP server> to update the system time.

#ntpdate time.stdtime.gov.tw
#hwclock –w

Visit http://www.ntp.org for more information about NTP and NTP server addresses.

 10.120.53.100 – PuTTY

root@Moxa:~# date ; hwclock

Sat Jan 1 00:00:36 CST 2000

Sat Jan 1 00:00:37 2000 -0.772941 seconds

root@Moxa:~# ntpdate time.stdtime.gov.tw

 9 Dec 10:58:53 ntpdate[207]: step time server 220.130.158.52 offset 155905087.9

84256 sec

root@Moxa:~# hwclock -w

root@Moxa:~# date ; hwclock

Thu Dec 9 10:59:11 CST 2004

Thu Dec 9 10:59:12 2004 -0.844076 seconds

root@Moxa:~#

ATTENTION

Before using the NTP client utility, check your IP and DNS settings to make sure that an Internet connection
is available. Refer to Chapter 2 for instructions on how to configure the Ethernet interface, and see Chapter
4 for DNS setting information.

Updating the Time Automatically
In this subsection, we show how to use a shell script to update the time automatically.

Example shell script to update the system time periodically

#!/bin/sh
ntpdate time.nist.gov
You can use the time server’s ip address or domain
name directly. If you use domain name, you must
enable the domain client on the system by updating

http://www.ntp.org/�

UC-8410/8416/8418/8430 Managing Embedded Linux

 3-10

/etc/resolv.conf file.
hwclock –w
sleep 100 # Updates every 100 seconds. The min. time is 100 seconds. Change 100
to a larger number to update RTC less often.

Save the shell script using any file name. E.g., fixtime

How to run the shell script automatically when the kernel boots up

Copy the example shell script fixtime to directory /etc/init.d, and then use

chmod 755 fixtime to change the shell script mode. Next, use vi editor to edit the file /etc/inittab. Add the
following line to the bottom of the file:

ntp : 2345 : respawn : /etc/init.d/fixtime

Use the command #init q to re-init the kernel.

Cron—Daemon to Execute Scheduled
Commands

Start Cron from the directory /etc/rc.d/rc.local. It will return immediately, so you do not need to start it with
an ampersand (&) to run in the background.

The Cron daemon will search /etc/cron.d/crontab for crontab files, which are named after accounts in
/etc/passwd.

Cron wakes up every minute, and checks each command to see if it should be run in the current minute.

Modify the file /etc/cron.d/crontab to set up your scheduled applications. Crontab files have the following
format:

mm h dom mon dow user command

min hour date month week user command

0-59 0-23 1-31 1-12 0-6 (0 is Sunday)

The following example demonstrates how to use Cron.

The following steps show how to use cron to update the system time and RTC time every day at 8:00.

STEP1: Write a shell script named fixtime.sh and save it to /home/.

 #!/bin/sh
 ntpdate time.nist.gov
 hwclock –w
 exit 0

STEP2: Change mode of fixtime.sh

 #chmod 755 fixtime.sh

STEP3: Modify /etc/cron.d/crontab file to run fixtime.sh at 8:00 every day.

 Add the following line to the end of crontab:
 * 8 * * * root /home/fixtime.sh

STEP4: Enable the cron daemon manually.

 #/etc/init.d/cron start

STEP5: Enable cron when the system boots up.

 Add the following line in the file /etc/init.d/rc.local
 #/etc/init.d/cron start

UC-8410/8416/8418/8430 Managing Embedded Linux

 3-11

Connecting Peripherals

USB Mass Storage
The UC-8410/8416/8418/8430/8430 supports PNP (plug-n-play), and hot pluggability for connecting USB
mass storage devices. The UC-8410/8416/8418/8430/8430 has a built-in auto mount utility that eases the
mount procedure. The connected USB mass storage device will be mounted automatically. You can check the
location of the USB disk by mount command. The UC-8410/8416/8418/8430/8430 will be un-mounted
automatically with umount when the device is disconnected.

ATTENTION

Remember to type the #sync command before you disconnect the USB mass storage device. If you don’t

issue the command, you may lose some data.

Remember to exit the mount directory when you disconnect the USB mass storage device. If you stay in
mount directory, the auto un-mount process will fail. If that happens, type #umount mount directory to
un-mount the USB device manually. For example, type #umount /mnt/sdc.

The UC-8410/8416/8418/8430/8430 only supports certain types of flash disk USB Mass Storage devices.
Some USB flash disks and hard disks may not be compatible with the UC-8410/8416/8418/8430. Check
compatibility issues before you purchase a USB device to connect to the UC-8410/8416/8418/8430.

CF Mass Storage
The UC-8410/8416/8418/8430/8430 Embedded Computer does not support CompactFlash hot swap and PnP
(Plug and Play) function. It is necessary to remove power source first before inserting or removing the
CompactFlash card.The UC-8410/8416/8418/8430/8430 CF card doesn’t support PNP. This means that user
need to mount the CF card manually after inserting the CF mass storage.

You can mount the CF card manually with the command below:

Moxa: ~# mkdir /home/sda
Moxa: ~# mount -t ext2 /dev/sda1 /home/sda

You should umount the CF mass storage before you remove the CF card.

Moxa: ~# umount /home/sda

4
4. Managing Communication

In this chapter, we explain how to configure the UC-8410/8416/8418/8430’s various communication functions.

The following topics are covered in this chapter:

 Telnet/FTP

 DNS

 Web Service—Apache

 IPTABLES

 NAT

 NAT Example

 Enabling NAT at Bootup

 Dial-up Service—PPP

 PPPoE

 NFS (Network File System) Client

 Setting up the UC-8410/8416/8418/8430/8430 as an NFS Client

 Mail

 SNMP

 OpenVPN

 Package Management—ipkg

 Audio Playing and Recording

 Volume Control

 Playing a WAVE File

 Recording a WAVE file

UC-8410/8416/8418/8430 Managing Communication

 4-2

Telnet/FTP
In addition to supporting Telnet client/server and FTP client/server, the UC-8410/8416/8418/8430/8430 also
supports SSH and sftp client/server. To enable or disable the Telnet/ftp server, you first need to edit the file
/etc/inetd.conf.

Enabling the Telnet/ftp server

The following example shows the default content of the file /etc/inetd.conf. The default is to enable the
Telnet/ftp server:

discard dgram udp wait root /bin/discard
discard stream tcp nowait root /bin/discard
telnet stream tcp nowait root /bin/telnetd
ftp stream tcp nowait root /bin/ftpd -l

Disabling the Telnet/ftp server

Disable the daemon by typing ‘#’ in front of the first character of the row to comment out the line.

DNS
The UC-8410/8416/8418/8430/8430 supports DNS client (but not DNS server). To set up DNS client, you need
to edit three configuration files: /etc/hosts, /etc/resolv.conf, and /etc/nsswitch.conf.

/etc/hosts

This is the first file that the Linux system reads to resolve the host name and IP address.

/etc/resolv.conf

This is the most important file that you need to edit when using DNS for the other programs. For example,
before using #ntpdate time.nist.gov to update the system time, you will need to add the DNS server address
to the file. Ask your network administrator which DNS server address you should use. The DNS server’s IP
address is specified with the “nameserver” command. For example, add the following line to /etc/resolv.conf if
the DNS server’s IP address is 168.95.1.1:

nameserver 168.95.1.1

 192.168.3.127 – PuTTY

root@Moxa:/etc# cat resolv.conf

resolv.conf This file is the resolver configuration file

See resolver(5).

#nameserver 192.168.1.16

nameserver 168.95.1.1

nameserver 140.115.1.31

nameserver 140.115.236.10

root@Moxa:/etc#

/etc/nsswitch.conf

This file defines the sequence to resolve the IP address by using /etc/hosts file or /etc/resolv.conf.

UC-8410/8416/8418/8430 Managing Communication

 4-3

Web Service—Apache
The Apache web server’s main configuration file is /etc/apache/conf/httpd.conf, with the default
homepage located at /home/httpd/htdocs/index.html. Save your own homepage to the following
directory:

/home/httpd/htdocs/

Save your CGI page to the following directory:

/home/httpd/cgi-bin/

Before you modify the homepage, use a browser (such as Microsoft Internet Explorer or Mozilla Firefox) from
your PC to test if the Apache Web Server is working. Type the LAN1 IP address in the browser’s address box to
open the homepage. E.g., if the default IP address is still active, type http://host-ip-address in address box.

To open the default CGI page, type http://host-ip-address/cgi-bin/xxx.cgi (xxx is your cgi page) in
your browser’s address box.

To open the default CGI test script report page, type http://host-ip-address/cgi-bin/test-cgi in your
browser’s address box.

UC-8410/8416/8418/8430 Managing Communication

 4-4

ATTENTION

When you develop your own CGI application, make sure your CGI file is executable.

 192.168.3.127 – PuTTY

root@Moxa:/usr/www/cgi-bin# ls –al
drwxr—xr-x 2 root root 0 Aug 24 1999
drwxr—xr-x 5 root root 0 Nov 5 16:16
-rwxr—xr-x 1 root root 268 Dec 19 2002 printenv
-rwxr—xr-x 1 root root 757 Aug 24 1999 test-cgi
root@Moxa:/usr/www/cgi-bin#

IPTABLES
IPTABLES is an administrative tool for setting up, maintaining, and inspecting the Linux kernel’s IP packet filter
rule tables. Several different tables are defined, with each table containing built-in chains and user-defined
chains.

Each chain is a list of rules that apply to a certain type of packet. Each rule specifies what to do with a matching
packet. A rule (such as a jump to a user-defined chain in the same table) is called a “target.”

The UC-8410/8416/8418/8430/8430 supports 3 types of IPTABLES table: Filter tables, NAT tables, and Mangle
tables:

A. Filter Table—includes three chains:
INPUT chain
OUTPUT chain
FORWARD chain

B. NAT Table—includes three chains:
PREROUTING chain—transfers the destination IP address (DNAT)
POSTROUTING chain—works after the routing process and before the Ethernet device process to transfer
the source IP address (SNAT)
OUTPUT chain—produces local packets

sub-tables

Source NAT (SNAT)—changes the first source packet IP address
Destination NAT (DNAT)—changes the first destination packet IP address
MASQUERADE—a special form for SNAT. If one host can connect to internet, then other computers
that connect to this host can connect to the Internet when it the computer does not have an actual
IP address.
REDIRECT—a special form of DNAT that re-sends packets to a local host independent of the
destination IP address.

C. Mangle Table—includes two chains
PREROUTING chain—pre-processes packets before the routing process.
OUTPUT chain—processes packets after the routing process. It has three extensions—TTL, MARK, TOS.

The following figure shows the IPTABLES hierarchy.

UC-8410/8416/8418/8430 Managing Communication

 4-5

Incoming
Packets

Mangle Table
PREROUTING Chain

NAT Table
PREROUTING Chain

NAT Table
POSTROUTING Chain

Outgoing
Packets

Other Host
Packets

Mangle Table
FORWARD Chain

Filter Table
FORWARD Chain

Mangle Table
POSTROUTING Chain

Local Host
Packets

Mangle Table
INPUT Chain

Filter Table
INPUT Chain

Local
Process

Mangle Table
OUTPUT Chain

NAT Table
OUTPUT Chain

Filter Table
OUTPUT Chain

UC-8410/8416/8418/8430 Managing Communication

 4-6

The UC-8410/8416/8418/8430/8430 supports the following sub-modules. Be sure to use the module that
matches your application.

nf_conntrack nf_conntrack_ftp x_tables xt_CLASSIFY

xt_MARK xt_NFLOG xt_NFQUEUE xt_TCPMSS

xt_esp xt_length xt_limit xt_mac

xt_mark xt_multiport xt_pkttype xt_string

xt_tcpmss xt_tcpudp xt_u32 arp_tables

arpt_mangle arptable_filter ip_tables ipt_CLUSTERIP

ipt_ECN ipt_NETMAP ipt_SAME ipt_TTL

ipt_addrtype ipt_ecn ipt_iprange ipt_recent

iptable_filter iptable_mangle iptable_nat nf_conntrack_ipv4

nf_nat nf_nat_ftp nf_nat_snmp_basic

 ipt_ah

 ipt_MASQUERADE

 ipt_tos

 ipt_REDIRECT ipt_ttl

 ipt_REJECT

 ipt_TOS

ipt_LOG ipt_ULOG ipt_owner

NOTE The UC-8410/8416/8418/8430/8430 does NOT support IPV6 and ipchains.

The basic syntax to enable and load an IPTABLES module is as follows:

#lsmod
#modprobe ip_tables
#modprobe iptable_filter

Use lsmod to check if the ip_tables module has already been loaded in the UC-8410/8416/8418/8430. Use
modprobe to insert and enable the module.

Use the following command to load the modules (iptable_filter, iptable_mangle, iptable_nat):

#modprobe iptable_filter

NOTE IPTABLES plays the role of packet filtering or NAT. Take care when setting up the IPTABLES rules. If the rules
are not correct, remote hosts that connect via a LAN or PPP may be denied access. We recommend using the
serial console to set up the IPTABLES.

Click on the following links for more information about iptables.

http://www.linuxguruz.com/iptables/
http://www.netfilter.org/documentation/HOWTO//packet-filtering-HOWTO.html

Since the IPTABLES command is very complex, to illustrate the IPTABLES syntax we have divided our
discussion of the various rules into three categories: Observe and erase chain rules, Define policy rules,
and Append or delete rules.

Observe and erase chain rules

Usage:

iptables [-t tables] [-L] [-n]

-t tables: Table to manipulate (default: ‘filter’); example: nat or filter.
-L [chain]: List List all rules in selected chains. If no chain is selected, all chains are listed.
-n: Numeric output of addresses and ports.

http://www.linuxguruz.com/iptables/�
http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html�

UC-8410/8416/8418/8430 Managing Communication

 4-7

iptables [-t tables] [-FXZ]

-F: Flush the selected chain (all the chains in the table if none is listed).
-X: Delete the specified user-defined chain.
-Z: Set the packet and byte counters in all chains to zero.

Examples:

iptables -L -n

In this example, since we do not use the -t parameter, the system uses the default ‘filter’ table. Three chains
are included: INPUT, OUTPUT, and FORWARD. INPUT chains are accepted automatically, and all connections
are accepted without being filtered.

#iptables –F
#iptables –X
#iptables -Z

Define policy for chain rules

Usage:

iptables [-t tables] [-P] [INPUT, OUTPUT, FORWARD, PREROUTING, OUTPUT, POSTROUTING]
[ACCEPT, DROP]

-P: Set the policy for the chain to the given target.
INPUT: For packets coming into the UC-8410/8416/8418/8430.
OUTPUT: For locally-generated packets.
FORWARD: For packets routed out through the UC-8410/8416/8418/8430.
PREROUTING: To alter packets as soon as they come in.
POSTROUTING: To alter packets as they are about to be sent out.

Examples:

#iptables –P INPUT DROP
#iptables –P OUTPUT ACCEPT
#iptables –P FORWARD ACCEPT
modprobe iptable_nat
#iptables –t nat –P PREROUTING ACCEPT
#iptables –t nat –P OUTPUT ACCEPT
#iptables -t nat –P POSTROUTING ACCEPT

In this example, the policy accepts outgoing packets and denies incoming packets.

Append or delete rules:

Usage:

iptables [-t table] [-AI] [INPUT, OUTPUT, FORWARD] [-io interface] [-p tcp, udp,
icmp, all] [-s IP/network] [--sport ports] [-d IP/network] [--dport ports] –j [ACCEPT.
DROP]

-A: Append one or more rules to the end of the selected chain.
-I: Insert one or more rules in the selected chain as the given rule number.
-i: Name of an interface via which a packet is going to be received.
-o: Name of an interface via which a packet is going to be sent.
-p: The protocol of the rule or of the packet to check.
-s: Source address (network name, host name, network IP address, or plain IP

 address).
--sport: Source port number.
-d: Destination address.

UC-8410/8416/8418/8430 Managing Communication

 4-8

--dport: Destination port number.
-j: Jump target. Specifies the target of the rules; i.e., how to handle matched packets.

 For example, ACCEPT the packet, DROP the packet, or LOG the packet.

Examples:

Example 1: Accept all packets from lo interface.
iptables –A INPUT –i lo –j ACCEPT

Example 2: Accept TCP packets from 192.168.0.1.
iptables –A INPUT –i eth0 –p tcp –s 192.168.0.1 –j ACCEPT

Example 3: Accept TCP packets from Class C network 192.168.1.0/24.
iptables –A INPUT –i eth0 –p tcp –s 192.168.1.0/24 –j ACCEPT

Example 4: Drop TCP packets from 192.168.1.25.
iptables –A INPUT –i eth0 –p tcp –s 192.168.1.25 –j DROP

Example 5: Drop TCP packets addressed for port 21.
modprobe xt_tcpudp
iptables –A INPUT –i eth0 –p tcp --dport 21 –j DROP

Example 6: Accept TCP packets from 192.168.0.24 to LAN1 port 137, 138, 139
iptables –A INPUT –i eth0 –p tcp –s 192.168.0.24 --dport 137:139 –j ACCEPT

Example 7: Log TCP packets that visit the LAN1 port 25.
iptables –A INPUT –i eth0 –p tcp --dport 25 –j LOG

Example 8: Drop all packets from MAC address 01:02:03:04:05:06.
modprobe xt_mac
iptables –A INPUT –i eth0 –p all –m mac -–mac-source 01:02:03:04:05:06 –j DROP

NOTE: In Example 8, remember to issue the command #modprobe ipt_mac first to load the module xt_mac

NAT
NAT (Network Address Translation) protocol translates IP addresses used on one network to different IP
addresses used on another network. One network is designated the inside network and the other is the outside
network. Typically, the UC-8410/8416/8418/8430/8430 connects several devices on a network and maps local
inside network addresses to one or more global outside IP addresses, and un-maps the global IP addresses on
incoming packets back into local IP addresses.

NOTE Click the following link for more information about iptables and NAT:

http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html

http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html�

UC-8410/8416/8418/8430 Managing Communication

 4-9

NAT Example
The IP address of LAN1 is changed to 192.168.3.127 (you will need to load the module ipt_MASQUERADE):

1. #echo 1 > /proc/sys/net/ipv4/ip_forward
2. #modprobe ip_tables
3. #modprobe iptable_filter
4. #modprobe ip_conntrack
5. #modprobe iptable_nat
6. #modprobe ipt_MASQUERADE
7. #iptables -t nat –A POSTROUTING –o eth0 –j SNAT --to-source 192.168.3.127

or
#iptables –t nat –A POSTROUTING –o eth0 –j MASQUERADE

Enabling NAT at Bootup
In most real world situations, you will want to use a simple shell script to enable NAT when the
UC-8410/8416/8418/8430/8430 boots up. The following script is an example.

#!/bin/bash
If you put this shell script in the /home/nat.sh
Remember to chmod 744 /home/nat.sh
Edit the rc.local file to make this shell startup automatically.
vi /etc/rc.d/rc.local
Add a line in the end of rc.local /home/nat.sh
EXIF=‘eth0’ #This is an external interface for setting up a valid IP address.
EXNET=‘192.168.4.0/24’ #This is an internal network address.
Step 1. Insert modules.
Here 2> /dev/null means the standard error messages will be dump to null device.
modprobe ip_tables 2> /dev/null
modprobe iptable_filter 2> /dev/null
modprobe iptable_nat 2> /dev/null
modprobe ip_conntrack 2> /dev/null
modprobe ip_conntrack_ftp 2> /dev/null
modprobe iptable_nat
modprobe ip_nat_ftp 2> /dev/null
Step 2. Define variables, enable routing and erase default rules.
PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin

UC-8410/8416/8418/8430 Managing Communication

 4-10

export PATH
echo “1” > /proc/sys/net/ipv4/ip_forward
/sbin/iptables -F
/sbin/iptables -X
/sbin/iptables -Z
/sbin/iptables -F -t nat
/sbin/iptables -X -t nat
/sbin/iptables -Z -t nat
/sbin/iptables -P INPUT ACCEPT
/sbin/iptables -P OUTPUT ACCEPT
/sbin/iptables -P FORWARD ACCEPT
/sbin/iptables -t nat -P PREROUTING ACCEPT
/sbin/iptables -t nat -P POSTROUTING ACCEPT
/sbin/iptables -t nat -P OUTPUT ACCEPT
Step 3. Enable IP masquerade.

Dial-up Service—PPP
PPP (Point to Point Protocol) is used to run IP (Internet Protocol) and other network protocols over a serial link.
PPP can be used for direct serial connections (using a null-modem cable) over a Telnet link, and links
established using a modem over a telephone line.

Modem/PPP access is almost identical to connecting directly to a network through the
UC-8410/8416/8418/8430’s Ethernet port. Since PPP is a peer-to-peer system, the
UC-8410/8416/8418/8430/8430 can also use PPP to link two networks (or a local network to the Internet) to
create a Wide Area Network (WAN).

NOTE Click on the following links for more information about ppp:

http://tldp.org/HOWTO/PPP-HOWTO/index.html
http://axion.physics.ubc.ca/ppp-linux.html

The pppd daemon is used to connect to a PPP server from a Linux system. For detailed information about pppd
see the man page.

Example 1: Connecting to a PPP server over a simple dial-up

connection

The following command is used to connect to a PPP server by modem. Use this command for old ppp servers
that prompt for a login name (replace username with the correct name) and password (replace password with
the correct password). Note that debug and defaultroute 192.1.1.17 are optional.

#pppd connect ‘chat -v “ “ ATDT5551212 CONNECT” “ ogin: username word: password’
/dev/ttyM0 115200 debug crtscts modem defaultroute

If the PPP server does not prompt for the username and password, the command should be entered as follows.
Replace username with the correct username and replace password with the correct password.

#pppd connect ‘chat -v “ “ ATDT5551212 CONNECT” “ ‘ user username password password
/dev/ttyM0 115200 crtscts modem

The pppd options are described below:

connect ‘chat etc...’

This option gives the command to contact the PPP server. The ‘chat’ program is used to dial a remote computer.
The entire command is enclosed in single quotes because pppd expects a one-word argument for the ‘connect’
option. The options for ‘chat’ are given below:

http://tldp.org/HOWTO/PPP-HOWTO/index.html�
http://axion.physics.ubc.ca/ppp-linux.html�

UC-8410/8416/8418/8430 Managing Communication

 4-11

-v

verbose mode; log what we do to syslog

“ “

Double quotes—don’t wait for a prompt, but instead do (note that you must include a space after the second
quotation mark)

ATDT5551212

Dial the modem, and then ...

CONNECT

Wait for an answer.

“ “

Send a return (null text followed by the usual return)

ogin: username word: password

Log in with username and password.

Refer to the chat man page, chat.8, for more information about the chat utility.

/dev/

Specify the callout serial port.

115200

The baudrate.

Debug

Log status in syslog.

Crtscts

Use hardware flow control between the computer and modem (at 115200 this is a must).

Modem

Indicates that this is a modem device; pppd will hang up the phone before and after making the call.

Defaultroute

Once the PPP link is established, make it the default route; if you have a PPP link to the Internet, this is probably
what you want.

192.1.1.17

This is a degenerate case of a general option of the form x.x.x.x:y.y.y.y. Here x.x.x.x is the local IP address and
y.y.y.y is the IP address of the remote end of the PPP connection. If this option is not specified, or if just one
side is specified, then x.x.x.x defaults to the IP address associated with the local machine’s hostname (located
in /etc/hosts), and y.y.y.y is determined by the remote machine.

Example 2: Connecting to a PPP server over a hard-wired link

If a username and password are not required, use the following command (note that noipdefault is optional):

#pppd connect ‘chat –v” “ “ “ ‘ noipdefault /dev/ttyM0 19200 crtscts

If a username and password is required, use the following command (note that noipdefault is optional, and root
is both the username and password):

#pppd connect ‘chat –v” “ “ “ ‘ user root password root noipdefault
/dev/ttyM0 19200 crtscts

UC-8410/8416/8418/8430 Managing Communication

 4-12

How to check the connection

Once you’ve set up a PPP connection, there are some steps you can take to test the connection. First, type:

/sbin/ifconfig

(The folder ifconfig may be located elsewhere, depending on your distribution.) You should be able to see all
of the network interfaces that are UP. ppp0 should be one of them, and you should recognize the first IP
address as your own In addition, the “P-t-P address” (or point-to-point address) is the address of your server.
Here’s what it looks like on one machine:

lo Link encap Local Loopback

 inet addr 127.0.0.1 Bcast 127.255.255.255 Mask 255.0.0.0

 UP LOOPBACK RUNNING MTU 2000 Metric 1

 RX packets 0 errors 0 dropped 0 overrun 0

ppp0 Link encap Point-to-Point Protocol

 inet addr 192.76.32.3 P-t-P 129.67.1.165 Mask 255.255.255.0

 UP POINTOPOINT RUNNING MTU 1500 Metric 1

 RX packets 33 errors 0 dropped 0 overrun 0

 TX packets 42 errors 0 dropped 0 overrun 0

Now, type:

ping z.z.z.z

where z.z.z.z is the address of your name server. This should work. Here’s what the response could look like:

waddington:~$p ping 129.67.1.165

PING 129.67.1.165 (129.67.1.165): 56 data bytes

64 bytes from 129.67.1.165: icmp_seq=0 ttl=225 time=268 ms

64 bytes from 129.67.1.165: icmp_seq=1 ttl=225 time=247 ms

64 bytes from 129.67.1.165: icmp_seq=2 ttl=225 time=266 ms

^C

--- 129.67.1.165 ping statistics ---

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max = 247/260/268 ms

waddington:~$

Try typing:

netstat -nr

You should see three routes, similar to the following:

Kernel routing table
Destination Gateway Genmask Flags Metric Ref Use

iface

129.67.1.165 0.0.0.0 255.255.255.255 UH 0 0 6

ppp0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 129.67.1.165 0.0.0.0 UG 0 0 6298

ppp0

If your output looks similar, but does not have the destination 0.0.0.0 line (which refers to the default route
used for connections), you may have run pppd without the ‘defaultroute’ option. At this point you can try using
Telnet, ftp, or finger, bearing in mind that you will need to use numeric IP addresses unless you’ve set up
/etc/resolv.conf correctly.

UC-8410/8416/8418/8430 Managing Communication

 4-13

Setting up a Machine for Incoming PPP Connections

This first example applies to using a modem, and requires authorization with a username and password.

pppd/dev/ttyM0 115200 crtscts modem 192.168.16.1:192.168.16.2 login auth

You should also add the following line to the file /etc/ppp/pap-secrets:

* * ““ *

The first star (*) lets everyone login. The second star (*) lets every host connect. The pair of double quotation
marks (““) is to use the file /etc/passwd to check the password. The last star (*) is to let any IP connect.

The following example does not check the username and password:

pppd/dev/ttyM0 115200 crtscts modem 192.168.16.1:192.168.16.2

PPPoE
1. Connect the UC-8410/8416/8418/8430’s LAN port to an ADSL modem with a cross-over cable, HUB, or

switch.

2. Log in to the UC-8410/8416/8418/8430/8430 as the root user.

3. Edit the file /etc/ppp/chap-secrets and add the following:
“username@hinet.net” * “password” *

 192.168.3.127 – PuTTY

Secrets for authentication using CHAP

client server secret IP addresses

PPPOE example, if you want to use it, you need to unmark it and modify it

“username@hinet.net” * “password” *

“username@hinet.net” is the username obtained from the ISP to log in to the ISP account.
“password” is the corresponding password for the account.

4. Edit the file /etc/ppp/pap-secrets and add the following:
“username@hinet.net” * “password” *

 192.168.3.127 – PuTTY

support hostname “*” -

stats hostname “*” -

OUTBOUND connections

ATTENTION: The definitions here can allow users to login without a

package already provides this option; make sure you don’t change that.

INBOUND connections

Every regular user can use PPP and has to use passwords from /etc/passwd

* hostname ““ *

“username@hinet.net” * “password” *

PPPOE user example, if you want to use it, you need to unmark it and modify it

#”username@hinet.net” * “password” *

UserIDs that cannot use PPP at all. Check your /etc/passwd and add any

UC-8410/8416/8418/8430 Managing Communication

 4-14

other accounts that should not be able to use pppd!

guest hostname “*” -

master hostname “*” -

root hostname “*” -

support hostname “*” -

stats hostname “*” -

“username@hinet.net” is the username obtained from the ISP to log in to the ISP account. “password”
is the corresponding password for the account.

5. Edit the file /etc/ppp/options and add the following line:
plugin pppoe

 192.168.3.127 – PuTTY

Wait for up n milliseconds after the connect script finishes for a valid

PPP packet from the peer. At the end of this time, or when a valid PPP

packet is received from the peer, pppd will commence negotiation by

sending its first LCP packet. The default value is 1000 (1 second).

This wait period only applies if the connect or pty option is used.

#connect-delay <n>

Load the pppoe plugin

plugin /lib/rp-pppoe.so

---<End of File>---

6. Add one of two files: /etc/ppp/options.eth0 or /etc/ppp/options.eth1. The choice depends on which

LAN is connected to the ADSL modem. If you use LAN1 to connect to the ADSL modem, then add
/etc/ppp/options.eth0. If you use LAN2 to connect to the ADSL modem, then add
/etc/ppp/options.eth1. The file context is shown below:
 192.168.3.127 – PuTTY

name username@hinet.net

mtu 1492

mru 1492

defaultroute

noipdefault

Type your username (the one you set in the /etc/ppp/pap-secrets and /etc/ppp/chap-secrets files)
after the “name” option. You may add other options as desired.

7. Set up DNS.

If you are using DNS servers supplied by your ISP, edit the file
 /etc/resolv.conf by adding the following lines of code:
 nameserver ip_addr_of_first_dns_server
 nameserver ip_addr_of_second_dns_server

For example:
 nameserver 168.95.1.1
 nameserver 139.175.10.20

UC-8410/8416/8418/8430 Managing Communication

 4-15

8. Use the following command to create a pppoe connection:
 pppd eth0

The eth0 is what is connected to the ADSL modem LAN port. The example above uses LAN1. To use LAN2,
type:
 pppd eth1

9. Type ifconfig ppp0 to check if the connection is OK or has failed. If the connection is OK, you will see

information about the ppp0 setting for the IP address. Use ping to test the IP.

10. If you want to disconnect it, use the kill command to kill the pppd process.

NFS (Network File System) Client
The Network File System (NFS) is used to mount a disk partition on a remote machine, as if it were on a local
hard drive, allowing fast, seamless sharing of files across a network. NFS allows users to develop applications
for the UC-8410/8416/8418/8430, without worrying about the amount of disk space that will be available. The
UC-8410/8416/8418/8430/8430 supports NFS protocol for client.

NOTE Click on the following links for more information about NFS:

http://www.tldp.org/HOWTO/NFS-HOWTO/index.html
http://nfs.sourceforge.net/nfs-howto/client.html
http://nfs.sourceforge.net/nfs-howto/server.html

Setting up the UC-8410/8416/8418/8430/8430 as an NFS

Client
The following procedure is used to mount a remote NFS Server.

1. Establish a mount point on the NFS Client site.

2. Mount the remote directory to a local directory.

Steps 1:
#mkdir –p /home/nfs/public

Step 2:
#mount –t nfs NFS_Server(IP):/directory /mount/point

Example
: #mount –t nfs 192.168.3.100/home/public /home/nfs/public

Mail
smtpclient is a minimal SMTP client that takes an email message body and passes it on to an SMTP server. It
is suitable for applications that use email to send alert messages or important logs to a specific user.

NOTE Click on the following link for more information about smtpclient:

http://www.engelschall.com/sw/smtpclient/

To send an email message, use the ‘smtpclient’ utility, which uses SMTP protocol. Type #smtpclient--help to
see the help message.

http://www.tldp.org/HOWTO/NFS-HOWTO/index.html�
http://nfs.sourceforge.net/nfs-howto/client.html�
http://nfs.sourceforge.net/nfs-howto/server.html�
http://www.engelschall.com/sw/smtpclient/�

UC-8410/8416/8418/8430 Managing Communication

 4-16

Example:

smtpclient –s test –f sender@company.com –S IP_address receiver@company.com
< mail-body-message

-s: The mail subject.
-f: Sender’s mail address
-S: SMTP server IP address

The last mail address receiver@company.com is the receiver’s e-mail address.
mail-body-message is the mail content. The last line of the body of the message should contain ONLY the
period ‘.’ character.

You will need to add your hostname to the file /etc/hosts.

SNMP
The UC-8410/8416/8418/8430/8430 has the SNMP V1 (Simple Network Management Protocol) agent software
built in. It supports RFC1317 RS-232 like groups and RFC 1213 MIB-II.

The following simple example allows you to use an SNMP browser on the host site to query the
UC-8410/8416/8418/8430, which is the SNMP agent. The UC-8410/8416/8418/8430/8430 will respond.

debian:~# snmpwalk -v 1 -c public -Cc 192.168.30.127

SNMPv2-MIB::sysDescr.0 = STRING: Linux version 2.6.23.1 (root@UC8400) (gcc version 4.2.1) #1137 Wed
Sep 17 16:17:45 EDT 2008
SNMPv2-MIB::sysObjectID.0 = OID: SNMPv2-SMI::enterprises.8691.12.8410/8416/8418
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (239600) 0:39:56.00
SNMPv2-MIB::sysContact.0 = STRING: Moxa Systems Co., LDT.
SNMPv2-MIB::sysName.0 = STRING: (none)
SNMPv2-MIB::sysLocation.0 = STRING: Unknown
SNMPv2-MIB::sysServices.0 = INTEGER: 6
IF-MIB::ifNumber.0 = INTEGER: 11
IF-MIB::ifIndex.1 = INTEGER: 1
IF-MIB::ifIndex.2 = INTEGER: 2
IF-MIB::ifIndex.3 = INTEGER: 3
IF-MIB::ifIndex.4 = INTEGER: 4
IF-MIB::ifIndex.5 = INTEGER: 5
IF-MIB::ifIndex.6 = INTEGER: 6
IF-MIB::ifIndex.7 = INTEGER: 7
IF-MIB::ifIndex.8 = INTEGER: 8
IF-MIB::ifIndex.9 = INTEGER: 9
IF-MIB::ifIndex.10 = INTEGER: 10
IF-MIB::ifIndex.11 = INTEGER: 11
IF-MIB::ifDescr.1 = STRING: eth0
IF-MIB::ifDescr.2 = STRING: eth1
IF-MIB::ifDescr.3 = STRING: eth2***** SNMP QUERY FINISHED *****

NOTE Click on the following links for more information about MIB II and RS-232 like groups:

http://www.faqs.org/rfcs/rfc1213.html
http://www.faqs.org/rfcs/rfc1317.html

 The UC-8410/8416/8418/8430/8430 does NOT support SNMP trap.

The following tables list the variables supported by the UC-8410/8416/8418/8430.

http://www.faqs.org/rfcs/rfc1213.html�
http://www.faqs.org/rfcs/rfc1317.html�

UC-8410/8416/8418/8430 Managing Communication

 4-17

OpenVPN
OpenVPN provides two types of tunnels for users to implement VPNS: Routed IP Tunnels and Bridged
Ethernet Tunnels. To begin with, check to make sure that the system has a virtual device /dev/net/tun. If
not, issue the following command:

mknod /dev/net/tun c 10 200

An Ethernet bridge is used to connect different Ethernet networks together. The Ethernets are bundled into one
bigger, “logical” Ethernet. Each Ethernet corresponds to one physical interface (or port) that is connected to the
bridge.

On each OpenVPN machine, you should generate a working directory, such as /etc/openvpn, where script
files and key files reside. Once established, all operations will be performed in that directory.

Setup 1: Ethernet Bridging for Private Networks on Different Subnets

1. Set up four machines, as shown in the following diagram.

Host A (B) represents one of the machines that belongs to OpenVPN A (B). The two remote subnets are
configured for a different range of IP addresses. When this setup is moved to a public network, the external
interfaces of the OpenVPN machines should be configured for static IPs, or connect to another device (such
as a firewall or DSL box) first.
openvpn --genkey --secret secrouter.key

Copy the file that is generated to the OpenVPN machine.

2. The openvpn-bridge script file located at “/etc/openvpn/” reconfigures the interface “eth1” as IP-less,
creates logical bridge(s) and TAP interfaces, loads modules, and enables IP forwarding.

#---------------------------------Start-----------------------------
#!/bin/sh
iface=eth1 # defines the internal interface
maxtap=`expr 1` # defines the number of tap devices. I.e., # of tunnels
IPADDR=
NETMASK=
BROADCAST=
it is not a great idea but this system doesn’t support
/etc/sysconfig/network-scripts/ifcfg-eth1
ifcfg_vpn()

UC-8410/8416/8418/8430 Managing Communication

 4-18

{
 while read f1 f2 f3 f4 r3
 do
 if [“$f1” = “iface” -a “$f2” = “$iface” -a “$f3” = “inet” -a “$f4” =
“static”];then
 i=`expr 0`
 while :
 do
 if [$i -gt 5]; then
 break
 fi
 i=`expr $i + 1`
 read f1 f2
 case “$f1” in
 address) IPADDR=$f2
 ;;
 netmask) NETMASK=$f2
 ;;
 broadcast) BROADCAST=$f2
 ;;
 esac
 done
 break
 fi
 done < /etc/network/interfaces
}
get the ip address of the specified interface
mname=
module_up()
{
 oIFS=$IFS
 IFS=‘
 ‘
 FOUND=“no”
 for LINE in `lsmod`
 do
 TOK=`echo $LINE | cut -d’ ‘ -f1`
 if [“$TOK” = “$mname”]; then
 FOUND=“yes”;
 break;
 fi
 done
 IFS=$oIFS

 if [“$FOUND” = “no”]; then
 modprobe $mname
 fi
}
start()
{
 ifcfg_vpn
 if [! \(-d “/dev/net” \)]; then
 mkdir /dev/net
 fi

UC-8410/8416/8418/8430 Managing Communication

 4-19

 if [! \(-r “/dev/net/tun” \)]; then
 # create a device file if there is none
 mknod /dev/net/tun c 10 200
 fi
 # load modules “tun” and “bridge”
 mname=tun
 module_up
 mname=bridge
 module_up
 # create an ethernet bridge to connect tap devices, internal interface
 brctl addbr br0
 brctl addif br0 $iface
 # the bridge receives data from any port and forwards it to other ports.

 i=`expr 0`
 while :
 do
 # generate a tap0 interface on tun
 openvpn --mktun --dev tap${i}
 # connect tap device to the bridge
 brctl addif br0 tap${i}

 # null ip address of tap device
 ifconfig tap${i} 0.0.0.0 promisc up

 i=`expr $i + 1`
 if [$i -ge $maxtap]; then
 break
 fi
 done

 # null ip address of internal interface
 ifconfig $iface 0.0.0.0 promisc up

 # enable bridge ip
 ifconfig br0 $IPADDR netmask $NETMASK broadcast $BROADCAST

 ipf=/proc/sys/net/ipv4/ip_forward
 # enable IP forwarding
 echo 1 > $ipf
 echo “ip forwarding enabled to”
 cat $ipf
}
stop() {
 echo “shutdown openvpn bridge.”
 ifcfg_vpn
 i=`expr 0`
 while :
 do
 # disconnect tap device from the bridge
 brctl delif br0 tap${i}
 openvpn --rmtun --dev tap${i}

 i=`expr $i + 1`
 if [$i -ge $maxtap]; then

UC-8410/8416/8418/8430 Managing Communication

 4-20

 break
 fi
 done
 brctl delif br0 $iface
 brctl delbr br0
 ifconfig br0 down
 ifconfig $iface $IPADDR netmask $NETMASK broadcast $BROADCAST
 killall -TERM openvpn
}
case “$1” in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart)
 stop
 start
 ;;
 *)
 echo “Usage: $0 [start|stop|restart]”
 exit 1
esac
exit 0
#---------------------------------- end -----------------------------

3. On machine OpenVPN A, modify the remote address in the configuration file,
/etc/openvpn/tap0-br.conf.

/etc/openvpn/tap0-br.conf
point to the peer
remote 192.168.8.174
dev tap0
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
up /etc/openvpn/tap0-br.sh

Next, modify the routing table in the /etc/openvpn/tap0-br.sh script file.
#----------------------------------Start------------------------------
#!/bin/sh
/etc/openvpn/tap0-br.sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.4.0 netmask 255.255.255.0 dev br0
#---------------------------------- end ------------------------------

On machine OpenVPN B, modify the remote address in the configuration file,
/etc/openvpn/tap0-br.conf.
/etc/openvpn/tap0-br.conf
point to the peer
remote 192.168.8.173
dev tap0

UC-8410/8416/8418/8430 Managing Communication

 4-21

secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
up /etc/openvpn/tap0-br.sh

Next, modify the routing table in the /etc/openvpn/tap0-br.sh script file.
#---------------------------------- Start----------------------------
#!/bin/sh
/etc/openvpn/tap0-br.sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.2.0 netmask 255.255.255.0 dev br0
#---------------------------------- end -----------------------------

Note: Select cipher and authentication algorithms by specifying “cipher” and “auth”. To see with algorithms
are available, type:
openvpn --show-ciphers
openvpn --show—auths

4. After configuring the remote peer, we can load the bridge into kernel, reconfigure eth1, and enable IP
forwarding on both OpenVPN machine.

/etc/openvpn/openvpn-bridge start

Next, start both OpenVPN peers,
openvpn --config /etc/openvpn/tap0-br.conf &

If you see the line “Peer Connection Initiated with 192.168.8.173:5000” on each machine, the connection
between OpenVPN machines has been established successfully on UDP port 5000.

Note: You can create link symbols to enable the /etc/openvpn/openvpn-bridge script at boot time:
ln -s /etc/openvpn/openvpn-bridge /etc/rc.d/rc3.d/S32vpn-br
ln -s /etc/openvpn/openvpn-bridge /etc/rc.d/rc6.d/K32vpn-br

5. On each OpenVPN machine, check the routing table by typing the command:

route

Destination Gateway Genmsk Flags Metric Ref Use Iface

192.168.4.0 * 255.255.255.0 U 0 0 0 br0

192.168.2.0 * 255.255.255.0 U 0 0 0 br0

192.168.8.0 * 255.255.255.0 U 0 0 0 eth0

Interface eth1 is connected to the bridging interface br0, to which device tap0 also connects, whereas the
virtual device tun sits on top of tap0. This ensures that all traffic from internal networks connected to
interface eth1 that come to this bridge write to the TAP/TUN device that the OpenVPN program monitors.
Once the OpenVPN program detects traffic on the virtual device, it sends the traffic to its peer.

6. To create an indirect connection to Host B from Host A, add the following routing item:
route add –net 192.168.4.0 netmask 255.255.255.0 dev eth0

To create an indirect connection to Host A from Host B, add the following routing item:
route add –net 192.168.2.0 netmask 255.255.255.0 dev eth0

Now ping Host B from Host A by typing:
ping 192.168.4.174

UC-8410/8416/8418/8430 Managing Communication

 4-22

A successful ping indicates that you have created a VPN system that only allows authorized users from one
internal network to access users at the remote site. For this system, all data is transmitted by UDP packets
on port 5000 between OpenVPN peers.

7. To shut down OpenVPN programs, type the command:
/etc/openvpn/openvpn-bridge stop

Setup 2: Ethernet Bridging for Private Networks on the Same Subnet

1. Set up four machines as shown in the following diagram:

2. The configuration procedure is almost the same as for the previous example. The only difference is that you
will need to comment out the parameter “up” in “/etc/openvpn/tap0-br.conf” and
“/etc/openvpn/tap0-br.conf”.

Setup 3: Routed IP

1. Set up four machines as shown in the following diagram:

UC-8410/8416/8418/8430 Managing Communication

 4-23

2. On machine OpenVPN A, modify the remote address in the configuration file, /etc/openvpn/tun.conf.

point to the peer
remote 192.168.8.174
dev tun
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
ifconfig 192.168.2.173 192.168.4.174
up /etc/openvpn/tun.sh

Next, modify the routing table in the /etc/openvpn/tun.sh script file.

#--------------------------------- Start-----------------------------
#!/bin/sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.4.0 netmask 255.255.255.0 gw $5
#--------------------------------- end ------------------------------

On machine OpenVPN B, modify the remote address in the configuration file, /etc/openvpn/tun.conf.

remote 192.168.8.173
dev tun
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
ifconfig 192.168.4.174 192.168.2.173
up /etc/openvpn/tun.sh

Next, modify the routing table in the /etc/openvpn/tun.sh script file.

#--------------------------------- Start----------------------------
#!/bin/sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.2.0 netmask 255.255.255.0 gw $5
#--------------------------------- end -----------------------------

Note that the parameter “ifconfig” defines the first argument as the local internal interface and the second
argument as the internal interface at the remote peer.

Note that $5 is the argument that the OpenVPN program passes to the script file. Its value is the second
argument of ifconfig in the configuration file.

3. Check the routing table after you run the OpenVPN programs, by typing the command:
route

Destination Gateway Genmsk Flags Metric Ref Use Iface

192.168.4.174 * 255.255.255.255 UH 0 0 0 tun0

192.168.4.0 192.168.4.174 255.255.255.0 UG 0 0 0 tun0

192.168.2.0 * 255.255.255.0 U 0 0 0 eth1

192.168.8.0 * 255.255.255.0 U 0 0 0 eth0

UC-8410/8416/8418/8430 Managing Communication

 4-24

Package Management—ipkg
ipkg is a very lightweight package management system. It also allows for dynamic installation/removal of
packages on a running system. Because the disk space is limited, we provide the software as extension
packages. You can use ipkg-cl to install or remove .ipk packages on the UC-8410/8416/8418/8430-LX.

Install an .ipk package via an .ipk file

Upload the .ipk package to the Moxa embedded computer:

192.168.3.127 – Putty

Moxa:~# scp /mnt/cdrom/utility_tools/ipkg_packages/libphp5_1.0_xscale.ipk 192.168.3.127:/tmp/

Install the uploaded package:

192.168.3.127 – Putty

Moxa:~# ipkg-cl install/tmp/libphp5_1.0_xscale.ipk

List the installed packages

192.168.3.127 – Putty

Moxa:~# ipkg-cl list_installed

Remove a package

192.168.3.127 – Putty

Moxa:~# ipkg-cl remove libphp5

Audio Playing and Recording
The UC-8430 platform comes with audio line-in and line-out ports. We provide the audio playback utility vplay,
and the audio recording utility vrec with this platform.

Volume Control
mixer:

Use the following commands to control the input and output volume. The volume range is from 0 to 100.
Device File on Linux: /dev/mixer

root@Moxa:/root# mixer vol 100

Usage: mixer vol <value>

Eample:

Use the following commands to set the maximum volume.

root@Moxa:/root# mixer vol 100

Setting the mixer vol to 100:100.

Example:

Use the following commands to set the left/right channel volume at 70/80.

root@Moxa:/root# mixer vol 70:80

Setting the mixer vol to 70:80.

UC-8410/8416/8418/8430 Managing Communication

 4-25

Playing a WAVE File
vplay:

vplay can be used for playing a wave file. It supports playing mono or stereo wave files at a 11025, 22050, or
44100 HZ sampling rate, with 8 or 16 bits.

Device File on Linux: /dev/dsp

vplay [-qvwrS] [-s speed] [-t seconds] -b bits [filename1 ...]

-S Stereo (default is mono).

-s speed Sets the speed (default is 11025 kHz). If the speed is less than 300, it will be multiplied by
1000.

-t seconds Sets the recording (or playback) time in seconds (default is no time limit)

-b bits Sets the sample size (bits/sample). Possible values are 8 and 16 (default 8).

-w record a MICROSOFT WAVE file

-r records raw data without header

-q quiet mode

Example: Use the following commands to play a WAVE file.

root@Moxa:/root# vplay /tmp/test.wav

Playing WAVE : 16 bit, Speed 44100 Hz 16 bits Stereo ...

root@Moxa:/root#

Recording a WAVE file
vrec:

vrec can be used to record a wave file. It supports playing mono wave files at a 11025, 22050, or 44100 HZ
sampling rate, and with 8 or 16 bits.

Device File on Linux: /dev/dsp

vplay [-qvwrS] [-s speed] [-t seconds] -b bits [filename1 ...]

-S Stereo (default is mono).

-s speed Sets the speed (default is 11025 kHz). If the speed is less than 300, it will be multiplied by
1000.

-t seconds Sets the recording (or playback) time in seconds (default is no time limit)

-b bits Sets sample size (bits/sample). Possible values are 8 and 16 (default is 8).

-w record a MICROSOFT WAVE file

-r records raw data without a header

-q quiet mode

Example: Use the following commands to record a mono format WAVE file at a 22050 HZ sampling rate, with
16 bits, in 10 seconds.

root@Moxa:/root# vrec -t 10 -w -s 22050 -b 16 /dev/shm/22050_16_Mono.wav

Recording WAVE : 16 bit, Speed 22050 Hz 16 bits Mono ...

root@Moxa:/root#

NOTE The vrec does not support record the stereo format music.

5
5. Programmer's Guide

This chapter includes important information for programmers.

The following topics are covered in this chapter:

 Flash Memory Map

 Linux Tool Chain Introduction

 Debugging with GDB

 Device API

 RTC (Real Time Clock)

 Buzzer

 WDT (Watch Dog Timer)

 Digital I/O

 UART

 SRAM

 Make File Example

 Moxa CAN Programming Guide

 Introduction

 Programming Guide

 Software Lock

 Qt-embedded

 Compile and Test the QT Program on an X86 Machine

 Set up Qt development

 Cross-compile the Qt application and run with Dual-display

 Upload the binary to target and run it with following command

UC-8410/8416/8418/8430 Programmer's Guide

 5-2

Flash Memory Map
Partition sizes are hard coded into the kernel binary. To change partition sizes, you will need to
rebuild the kernel. The flash memory map is shown in the following table.

Address Size Contents
0x00000000 – 0x0009FFFF 640 KB Boot Loader—Read ONLY

0x000A0000 – 0x0027FFFF 1.875 MB Kernel object code—Read ONLY

0x00280000 – 0x00FDFFFF 13.375 MB Root file system (JFFS2) —Read ONLY

0x00FE0000 – 0x00FFFFFF 128 KB Boot Loader configuration and directory—Read ONLY

0x01000000 – 0x01FFFFFFF 32 MB User root file system (JFFS2) —Read/Write

 256 KB

NOTE 1. The default Moxa file system only enables the network. It lets users recover the user file system when
it fails.

2. The user file system is a complete file system. Users can create and delete directories and files (including
source code and executable files) as needed.

3. Users can create the user file system on the PC host or target platform, and then copy it to the
UC-8410/8416/8418/8430.

Linux Tool Chain Introduction
To ensure that an application will be able to run correctly when installed on the UC-8410/8416/8418/8430, you
must ensure that it is compiled and linked to the same libraries that will be present on the
UC-8410/8416/8418/8430. This is particularly true when the RISC XScale processor architecture of the
UC-8410/8416/8418/8430/8430 differs from the CISC x86 processor architecture of the host system, but it is
also true if the processor architecture is the same.

The host tool chain that comes with the UC-8410/8416/8418/8430/8430 contains a suite of cross compilers
and other tools, as well as the libraries and headers that are necessary to compile applications for the
UC-8410/8416/8418/8430. The host environment must be running Linux to install the
UC-8410/8416/8418/8430/8430 GNU Tool Chain. We have confirmed that the following Linux distributions can
be used to install the tool chain:

Redhat 7.3/8.0/9.0, Fefora core 1/2/3/4/5, Debian 4.0 32 bits platform.

The Tool Chain will need about 836 MB of hard disk space on your PC. The UC-8410/8416/8418/8430/8430
Tool Chain is located on the UC-8410/8416/8418/8430/8430 CD. To install the Tool Chain, insert the CD into
your PC and then issue the following commands:

With v1.x firmware:

#mount /dev/cdrom /mnt/cdrom
#sh /mnt/cdrom/tool-chain/linux/ arm-linux_2.3_Build_YYMMDDHH.sh

With v2.x firmware and arm-linux_3.0_Build_YYMMDDHH.sh

#mount /dev/cdrom /mnt/cdrom
#sh /mnt/cdrom/tool-chain/linux/ arm-linux_3.0_Build_YYMMDDHH.sh

Wait for a few minutes while the Tool Chain is installed automatically on your Linux PC. Once the host
environment has been installed, add the directory /opt/montavista/pro/devkit/arm/xscale_be/bin/ to your
path and the directory /opt/montavista/pro/devkit/arm/xscale_be/man/ to your manual path. You can do this
temporarily for the current login session by issuing the following commands:

For toolchain v2.x:

#export PATH=“/usr/local/arm-linux/bin:$PATH”
#export MANPATH=“/usr/local/arm-linux/man:$MANPATH”

UC-8410/8416/8418/8430 Programmer's Guide

 5-3

For toolchain v3.x:

#export PATH=“/usr/local/arm-linux-4.4.2/bin:$PATH”
#export MANPATH=“/usr/local/arm-linux-4.4.2/man:$MANPATH”

Alternatively, you can add the same commands to $HOME/.bash_profile to cause it to take effect for all login
sessions initiated by this user.

Obtaining help

Use the Linux man utility to obtain help on many of the utilities provided by the tool chain. For example to get
help on the arm-linux-gcc compiler, issue the command:

#man arm-linux-gcc

Cross Compiling Applications and Libraries

To compile a simple C application, just use the cross compiler instead of the regular compiler:

#xscale-linux-gcc –o example –Wall –g –O2 example.c
#xscale-linux-strip –s example
#xscale-linux-gcc -ggdb –o example-debug example.c

Tools Available in the Host Environment

Most of the cross compiler tools are the same as their native compiler counterparts, but with an additional
prefix that specifies the target system. In the case of x86 environments, the prefix is i386-linux- and in the
case of the UC-8410/8416/8418/8430/8430 XScale boards, it is xscale-linux-.

For example, the native C compiler is gcc and the cross C compiler for XScale in the
UC-8410/8416/8418/8430/8430 is xscale-linux-gcc.

The following cross compiler tools are provided:

ar Manages archives (static libraries)

as Assembler

c++, g++ C++ compiler

cpp C preprocessor

gcc C compiler

gdb Debugger

ld Linker

nm Lists symbols from object files

objcopy Copies and translates object files

objdump Displays information about object files

ranlib Generates indexes to archives (static libraries)

readelf Displays information about ELF files

size Lists object file section sizes

strings Prints strings of printable characters from files (usually object files)

strip Removes symbols and sections from object files (usually debugging information)

Debugging with GDB
First use the option -ggdb to compile the program. Use the following steps:

1. To debug a program called hello-debug on the target, use the command:
#gdbserver 192.168.4.142:2000 hello-debug

UC-8410/8416/8418/8430 Programmer's Guide

 5-4

This is where 2000 is the network port number on which the server waits for a connection from the client.
This can be any available port number on the target. Following this are the name of the program to be
debugged (hello-debug), plus that program’s arguments. Output similar to the following will be sent to the
console:

Process hello-debug created; pid=38

2. Use the following command on the host to change to the directory that contains hello-debug:
cd /my_work_directory/myfilesystem/testprograms

3. Enter the following command:
#ddd --debugger xscale-linux-gdb hello-debug &

4. Enter the following command at the GDB, DDD command prompt:
Target remote 192.168.4.99:2000

The command produces another line of output on the target console, similar to the following:

Remote debugging using 192.168.4.99:2000

192.168.4.99 is the machine’s IP address, and 2000 is the port number. You can now begin debugging in
the host environment using the interface provided by DDD.

5. Set a breakpoint on main by double clicking, or entering b main on the command line.
6. Click the cont button

Device API
The UC-8410/8416/8418/8430/8430 supports control devices with the ioctl system API. You will need to
include <moxadevice.h>, and use the following ioctl function.

int ioctl(int d, int request,…);
 Input: int d - open device node return file handle
 int request – argument in or out

Use the desktop Linux’s man page for detailed documentation:

#man ioctl

RTC (Real Time Clock)
The device node is located at /dev/rtc. The UC-8410/8416/8418/8430/8430 supports Linux standard simple
RTC control. You must include <linux/rtc.h>.

1. Function: RTC_RD_TIME

int ioctl(fd, RTC_RD_TIME, struct rtc_time *time);

Description: read time information from the RTC. It will return the value on argument 3.

2. Function: RTC_SET_TIME

int ioctl(fd, RTC_SET_TIME, struct rtc_time *time);

Description: set RTC time. Argument 3 will be passed to the RTC.

UC-8410/8416/8418/8430 Programmer's Guide

 5-5

Buzzer
The device node is located at /dev/console. The UC-8410/8416/8418/8430/8430 supports Linux standard
buzzer control, with the UC-8410/8416/8418/8430’s buzzer running at a fixed frequency of 100 Hz. You must
include <sys/kd.h>.

1. Function: KDMKTONE

ioctl(fd, KDMKTONE, unsigned int arg);

Description: The buzzer’s behavior is determined by the argument arg. The “high word” part of arg gives
the length of time the buzzer will sound, and the “low word” part gives the frequency.
The buzzer’s on/off behavior is controlled by software. If you call the “ioctl” function, you MUST set the
frequency to 100 Hz. If you use a different frequency, the system could crash.

WDT (Watch Dog Timer)
1. Introduction

The WDT works like a watch dog function. You can enable it or disable it. When the user enables WDT but
the application does not acknowledge it, the system will reboot. You can set the ack time from a minimum
of 50 msec to a maximum of 60 seconds.

2. How the WDT works
The sWatchDog is enabled when the system boots up. The kernel will auto ack it. The user application can
also enable ack. When the user does not ack, it will let the system reboot.

Kernel boot
 …..
 ….

User application running and enable user ack
 ….
 ….

3. The user API
The user application must use include <moxadevic.h>, and link libmoxalib.a. A makefile example

is shown below:

all:
 xscale-linux-gcc –o xxxx xxxx.c -lmoxalib

int swtd_open(void)

 Description
 If you would like to activate Watchdog for the AP, you must call this function.

 Input
 None

 Output
 The return value is file handle. If there is an error, it will return a negative value.

 You can get the error using the function errno().

int swtd_enable(int fd, unsigned long time)

 Description
 Enable the application sWatchDog. You must do an ack after this process.

 Input
 int fd - the file handle, from the swtd_open() return value.

UC-8410/8416/8418/8430 Programmer's Guide

 5-6

 unsigned long time - The time you wish to ack sWatchDog periodically. You must ack the
 sWatchDog before timeout. If you do not ack, the system will reboot automatically. The minimum time is
 50 msec, and the maximum time is 60 seconds. The time unit is msec.

 Output
 If you receive 0 (zero), it means the function is working. If you receive any other number, then there is
 something wrong with this function.

int swtd_disable(int fd)

 Description:
 Call this function if you would like the AP to stop using the Watchdog.

 Input :
 int fd - the file handle from swtd_open() return value.

 Output:
 If you receive 0 (zero), it means the function is working. If you receive any other number, then there is
 something wrong with this function.

int swtd_get(int fd, int *mode, unsigned long *time)

 Description:
 Get current setting values.

 mode –
 1 for user application enable sWatchDog: need to do ack.
 0 for user application disable sWatchdog: does not need to do ack.
 time – The time period to ack sWatchDog.

 Input:
 int fd - the file handle from swtd_open() return value.
 int *mode - the function will return the status: enable or disable.
 unsigned long *time – the function will return the current time period.

 Output:
 If you receive 0 (zero), it means the function is working. If you receive any other number, then there is
 something wrong with this function.

int swtd_ack(int fd)

 Description:
 Acknowledge sWatchDog. When the user application enable sWatchDog, it need to call this function
 periodically with user predefined time in the application program.

 Input:
 int fd - the file handle from swtd_open() return value.

 Output:
 If you receive 0 (zero), it means the function is working. If you receive any other number, then there is
 something wrong with this function.

int swtd_close(int fd)

 Description:
 Close the file handle.

 Input:
 int fd - the file handle from swtd_open() return value.

 Output:
 If you receive 0 (zero), it means the function is working. If you receive any other number, then there is
 something wrong with this function.

4. Special Note

UC-8410/8416/8418/8430 Programmer's Guide

 5-7

When you “kill the application with -9” or “kill without option” or “Ctrl+c” the kernel will change to auto ack
the sWatchDog.

When your application enables the sWatchDog and does not ack, your application may have a logical error,
or your application has made a core dump. The kernel will not change to auto ack. This can cause a serious
problem, causing your system to reboot again and again.

5. User application example

Example 1:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <moxadevice.h>
int main(int argc, char *argv[])
{
 int fd;
 fd = swtd_open();
 if (fd < 0) {
 printf(“Open sWatchDog device fail !\n”);
 exit(1);
 }
 swtd_enable(fd, 5000); // enable it and set it 5 seconds
 while (1) {
 // do user application want to do
 …..
 ….
 swtd_ack(fd);
 …..
 ….
 }
 swtd_close(fd);
 exit(0);
}

The makefile is shown below:
all:
 xscale-linux-gcc –o xxxx xxxx.c –lmoxalib

Example 2:
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/select.h>
#include <sys/time.h>
#include <moxadevice.h>
static void mydelay(unsigned long msec)
{
 struct timeval time;
 time.tv_sec = msec / 1000;
 time.tv_usec = (msec % 1000) * 1000;
 select(1, NULL, NULL, NULL, &time);
}
static int swtdfd;
static int stopflag=0;

UC-8410/8416/8418/8430 Programmer's Guide

 5-8

static void stop_swatchdog()
{
 stopflag = 1;
}
static void do_swatchdog(void)
{
 swtd_enable(swtdfd, 500);
 while (stopflag == 0) {
 mydelay(250);
 swtd_ack(swtdfd);
 }
 swtd_disable(swtdfd);
 }
int main(int argc, char *argv[])
{
 pid_t sonpid;
 signal(SIGUSR1, stop_swatchdog);
 swtdfd = swtd_open();
 if (swtdfd < 0) {
 printf(“Open sWatchDog device fail !\n”);
 exit(1);
 }
 if ((sonpid=fork()) == 0)
 do_swatchdog();
 // do user application main function
 …..
 …..
 …..
 // end user application
 kill(sonpid, SIGUSR1);
 swtd_close(swtdfd);
 exit(1);
}

The makefile is shown below:

all:
 xscale-linux-gcc –o xxxx xxxx.c –lmoxalib

Digital I/O
Digital Output channels can be set to high or low. The channels are controlled by the function call
set_dout_state(). The Digital Input channels can be used to detect the state change of the digital input
signal. The DI channels can also be used to detect whether or not the state of a digital signal changes during
a fixed period of time. This can be done with the function call set_din_event(). Moxa provides 5 function calls
to handle digital I/O state changes and event handling.

Application Programming Interface

Return error code definitions:

#define DIO_ERROR_PORT -1 // no such port

#define DIO_ERROR_MODE -2 // no such mode or state

#define DIO_ERROR_CONTROL -3 // open or ioctl fail

UC-8410/8416/8418/8430 Programmer's Guide

 5-9

#define DIO_ERROR_DURATION -4 // The value of duration is not 0 or not in the range,

40 <= duration <= 3600000 milliseconds (1 hour)

#define DIO_ERROR_DURATION_20MS -5 // The value of duration must be a multiple of 20

ms

#define DIO_OK 0

The definition of DIN and DOUT:

#define DIO_HIGH 1

#define DIO_LOW 0

int set_dout_state(int doport, int state)

Description: To set the DOUT port to high or low state.

Input: int doport - which DOUT port you want to set. Port starts from 0 to 3.
int state - to set high or low state; DIO_HIGH (1) for high, DIO_LOW (0) for low.
Output: none.
Return: reference the error code.

int get_din_state(int diport, int *state)

Description: To get the DIN port state.

Input: int diport - get the current state of which DIN port. Port numbering is from 0 to 3.
int *state - save the current state.
Output: state - DIO_HIGH (1) for high, DIO_LOW (0) for low.
Return: reference the error code.

int get_dout_state(int doport, int *state)

Description: To get the DOUT port state.
Input: int doport - get the current state of which DOUT port.
int *state - save the current state.
Output: state - DIO_HIGH (1) for high, DIO_LOW (0) for low.
Return: reference the error code.

int set_din_event(int diport, void (*func)(int diport), int mode, long int duration)

Description: Set the event for DIN when the state is changed from high to low or from low to high.
Input: int diport - the port that will be used to detect the DIN event.
Port numbering is from 0 to 3.
void (*func) (int diport) - Not NULL
> Returns the call back function. When the event occurs, the call back function will be invoked.
NULL > Clears this event

int mode DIN_EVENT_HIGH_TO_LOW

(1): from high to low
DIN_EVENT_LOW_TO_HIGH

(0): from low to high
DIN_EVENT_CLEAR

(-1): clear this event
unsigned long duration - 0: detect the din event > DIN_EVENT_HIGH_TO_LOW or
DIN_EVENT_LOW_TO_HIGH > without duration

- Not 0
> detect the din event
DIN_EVENT_HIGH_TO_LOW or
DIN_EVENT_LOW_TO_HIGH with duration. The value of “duration” must be a multiple of 20 milliseconds.

The range of “duration” is 0, or 40 <= duration <= 3600000 milliseconds. The error of the measurement
is 24 ms. For example, if the DIN duration is 200 ms, this event will be generated when the DIN pin stays
in the same state for a time between 176 ms and 200 ms. Output: none.
Return: reference the error code.

UC-8410/8416/8418/8430 Programmer's Guide

 5-10

int get_din_event(int diport, int *mode, long int *duration)

Description: To retrieve the DIN event configuration, including mode
(DIN_EVENT_HIGH_TO_LOW or DIN_EVENT_LOW_TO_HIGH), and the value of “duration.”
Input: int diport - which DIN port you want to retrieve.

- The port whose din event setting we wish to retrieve
int *mode - save which event is set.
unsigned long *duration - the duration of the DIN port is kept in high or low state.

- return to the current duration value of diport
Output: mode DIN_EVENT_HIGH_TO_LOW

(1): from high to low
DIN_EVENT_LOW_TO_HIGH(0): from low to high
DIN_EVENT_CLEAR(-1): clear this event
duration The value of duration should be 0 or 40 <= duration

<= 3600000 milliseconds.
Return: reference the error code.

Special Note

Do not forget to link to the library libmoxalib.a for DI/DO programming, and also include the header file
moxadevice.h. The DI/DO library only can be used by one program at a time.

Examples

Example 1

File Name: tdio.c

Description: The program indicates to connect DO1 to DI1, change the digital output state to high or low by
manual input, and then detect and count the state changed events from DI1.

#include <stdio.h>
#include <stdlib.h>
#include <moxadevice.h>
#include <fcntl.h>
#ifdef DEBUG
#define dbg_printf(x...) printf(x)
#else
#define dbg_printf(x...)
#endif
#define MIN_DURATION 40
static char *DataString[2]={“Low “, “High “};
static void hightolowevent(int diport)
{
printf(“\nDIN port %d high to low.\n”, diport);
}
static void lowtohighevent(int diport)
{
printf(“\nDIN port %d low to high.\n”, diport);
}
int main(int argc, char * argv[])
{
int i, j, state, retval;
unsigned long duration;
while(1) {

UC-8410/8416/8418/8430 Programmer's Guide

 5-11

printf(“\nSelect a number of menu, other key to exit. \n\
1. set high to low event \n\
2. get now data. \n\
3. set low to high event \n\
4. clear event \n\
5. set high data. \n\
6. set low data. \n\
7. quit \n\
8. show event and duration \n\
Choose : “);
retval =0;
scanf(“%d”, &i);
if (i == 1) { // set high to low event
printf(“Please keyin the DIN number : “);
scanf(“%d”, &i);
printf(“Please input the DIN duration, this minimun value must be over %d : “,
MIN_DURATION);
scanf(“%lu”, &duration);
retval=set_din_event(i, hightolowevent, DIN_EVENT_HIGH_TO_LOW, duration);
} else if (i == 2) { // get now data
printf(“DIN data : “);
for (j=0; j<4; j++) {
get_din_state(j, &state);
printf(“%s”, DataString[state]);
}
printf(“\n”);
printf(“DOUT data : “);
for (j=0; j<MAX_DOUT_PORT; j++) {
get_dout_state(j, &state);
printf(“%s”, DataString[state]);
}
printf(“\n”);
} else if (i == 3) { // set low to high event
printf(“Please keyin the DIN number : “);
scanf(“%d”, &i);
printf(“Please input the DIN duration, this minimun value must be over %d :”,
MIN_DURATION);
scanf(“%lu”, &duration);
retval = set_din_event(i, lowtohighevent, DIN_EVENT_LOW_TO_HIGH, duration);
} else if (i == 4) { // clear event
printf(“Please keyin the DIN number : “);
scanf(“%d”, &i);
retval=set_din_event(i, NULL, DIN_EVENT_CLEAR, 0);
} else if (i == 5) { // set high data
printf(“Please keyin the DOUT number : “);
scanf(“%d”, &i);
retval=set_dout_state(i, 1);
} else if (i == 6) { // set low data
printf(“Please keyin the DOUT number : “);
scanf(“%d”, &i);
retval=set_dout_state(i, 0);
} else if (i == 7) { // quit
break;
} else if (i == 8) { // show event and duration
printf(“Event:\n”);

UC-8410/8416/8418/8430 Programmer's Guide

 5-12

for (j=0; j<MAX_DOUT_PORT; j++) {
retval=get_din_event(j, &i, &duration);
switch (i) {
case DIN_EVENT_HIGH_TO_LOW :
printf(“(htl,%lu)”, duration);
break;
case DIN_EVENT_LOW_TO_HIGH :
printf(“(lth,%lu)”, duration);
break;
case DIN_EVENT_CLEAR :
printf(“(clr,%lu)”, duration);
break;
default :
printf(“err “);
break;
}
}
printf(“\n”);
} else {
printf(“Select error, please select again !\n”);
}
switch(retval) {
case DIO_ERROR_PORT:
printf(“DIO error port\n”);
break;
case DIO_ERROR_MODE:
printf(“DIO error mode\n”);
break;
case DIO_ERROR_CONTROL:
printf(“DIO error control\n”);
break;
case DIO_ERROR_DURATION:
printf(“DIO error duratoin\n”);
case DIO_ERROR_DURATION_20MS:
printf(“DIO error! The duratoin is not a multiple of 20 ms\n”);
break;
}
}
return 0;
}

DIO Program Make File Example

FNAME=tdio
CC=xscale-linux-gcc
STRIP=xscale-linux-strip
release:
$(CC) -o $(FNAME) $(FNAME).c -lmoxalib -lpthread
$(STRIP) -s $(FNAME)
debug:
$(CC) -DDEBUG -o $(FNAME)-dbg $(FNAME).cxx -lmoxalib -lpthread
clean:
/bin/rm -f $(FNAME) $(FNAME)-dbg *.o

UC-8410/8416/8418/8430 Programmer's Guide

 5-13

Note: For the UC-8418, 8 additional digital input channels and 8 additional digital output channels
are provided. The port numbers for these go from 4 to 11.

UART
The normal tty device node is located at /dev/ttyM0 … ttyM7, and the modem tty device node is located at
/dev/cum0 … cum7.

The UC-8410/8416/8418/8430/8430 supports Linux standard termios control. The Moxa UART Device API
allows you to configure ttyM0 to ttyM7 as RS-232, RS-422, 4-wire RS-485, or 2-wire RS-485. The
UC-8410/8416/8418/8430/8430 supports RS-232, RS-422, 2-wire RS-485, and 4-wire RS485.

You must include <moxadevice.h>.

#define RS232_MODE 0
#define RS485_2WIRE_MODE 1
#define RS422_MODE 2
#define RS485_4WIRE_MODE 3

1. Function: MOXA_SET_OP_MODE

int ioctl(fd, MOXA_SET_OP_MODE, &mode)

Description
Set the interface mode. Argument 3 mode will pass to the UART device driver and change it.

2. Function: MOXA_GET_OP_MODE

int ioctl(fd, MOXA_GET_OP_MODE, &mode)

Description
Get the interface mode. Argument 3 mode will return the interface mode.

There are two Moxa private ioctl commands for setting up special baudrates.

Function: MOXA_SET_SPECIAL_BAUD_RATE
Function: MOXA_GET_SPECIAL_BAUD_RATE

If you use this ioctl to set a special baudrate, the termios cflag will be B4000000, in which case the B4000000
definition will be different. If the baudrate you get from termios (or from calling tcgetattr()) is B4000000, you
must call ioctl with MOXA_GET_SPECIAL_BAUD_RATE to get the actual baudrate.

Setinterface

The Serial Port Expansion Module has 8 serial ports, labeled ttyM0 to ttyM7. The ports support RS-232, RS-422,
and RS-485 2-wire and 4-wire operation modes with baudrate settings up to 921600 bps.

The default operation mode is set to RS-232. You can use the setinterface command to change the serial port
operation mode.

Usage: setinterface device-node [interface-no]

device-node -- /dev/ttyMn; n = 0,1,2,...

interface-no -- As shown in the following table:

interface-no Operation Mode

None Display current setting

0 RS-232

1 RS-485 2-wire

UC-8410/8416/8418/8430 Programmer's Guide

 5-14

2 RS-422

3 RS-485 4-wire

The following example sets /dev/ttyM0 to RS-422 mode

Example for setting the baudrate

#include <moxadevice.h>
#include <termios.h>
struct termios term;
int fd, speed;
fd = open(“/dev/ttyM0”, O_RDWR);
tcgetattr(fd, &term);
term.c_cflag &= ~(CBAUD | CBAUDEX);
term.c_cflag |= B4000000;
tcsetattr(fd, TCSANOW, &term);
speed = 500000;
ioctl(fd, MOXA_SET_SPECIAL_BAUD_RATE, &speed);

Example for getting the baudrate

#include <moxadevice.h>
#include <termios.h>
struct termios term;
int fd, speed;
fd = open(“/dev/ttyM0”, O_RDWR);
tcgetattr(fd, &term);
if ((term.c_cflag & (CBAUD|CBAUDEX)) != B4000000)
{// follow the standard termios baud rate define} else
{ioctl(fd, MOXA_GET_SPECIAL_BAUD_RATE, &speed);}

Baudrate inaccuracy

Divisor = 921600/Target Baud Rate. (Only Integer part)
ENUM = 8 * (921600/Target - Divisor) (Round up or down)
Inaccuracy = (Target Baud Rate – 921600/(Divisor + (ENUM/8))) / Target Baud Rate * 100%
E.g.,
To calculate 500000 bps
Divisor = 1, ENUM = 7,
Inaccuracy = 1.7%

NOTE: The Inaccuracy should less than 2% for the device to work reliably.

Special Note

1. If the target baudrate is not a special baudrate (e.g., 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800,
2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600), the termios cflag will be set
to the same flag.

root@Moxa:/# setinterface /dev/ttyM0 2

root@Moxa:~# setinterface /dev/ttyM0

Now setting is RS422 interface.

root@Moxa:~#

UC-8410/8416/8418/8430 Programmer's Guide

 5-15

2. If you use stty to get the serial information, you will get a speed equal to 0.

SRAM
1. Introduction

The UC-8410/8416/8418/8430/8430 provides 256 KB of embedded SRAM. As there is a system battery
inside the computer, the SRAM can work and be used to keep data even when the system is crashed. This
means that the data stored on the SRAM will not be lost after the UC-8410/8416/8418/8430/8430 is
powered off.

2. How the SRAM works
The SRAM device can be programmed through the file /dev/sram. This means that you can read from or
write to /dev/sram to store data on the embedded SRAM. The following example illustrates how to do this:

/**

History :

 Versoin Author Date Comment

 1.0 Jared Wu. 09-11-2008 Write a pattern to SRAM.

**/

#include <sys/types.h>

#include <sys/stat.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <fcntl.h>

#include <linux/kd.h>

#define SRAM_SIZE 0x00040000 // 256 Kbytes

static char sram_buf1[SRAM_SIZE], sram_buf2[SRAM_SIZE];

int main(int argc, char * argv[])

{

 int fd, len;

 unsigned long ms=0;

 char pattern=‘9’;

 if (argc > 2) {

 printf(“Usage: %s [pattern]\n”);

 exit(0);

 }

 if (argc == 2) {

 pattern=argv[1][0];

 printf(“pattern:%c\n”, pattern);

 }

 fd = open(“/dev/sram”, O_RDWR);

 if(fd < 0) {

 printf(“Open /dev/sram fail”);

 exit(0);

 }

 // Write the sram with patern

 memset(sram_buf1, pattern, sizeof(sram_buf1));

 len=write(fd, sram_buf1, sizeof(sram_buf1));

 if(len < 0) {

 printf(“Write /dev/sram fail”);

 exit(0);

 }

 printf(“The content is written\n”);

 close(fd);

UC-8410/8416/8418/8430 Programmer's Guide

 5-16

}

/**

History :

 Versoin Author Date Comment

 1.0 Jared Wu. 09-11-2008 Read from the SRAM and compare with some pattern.

**/

#include <sys/types.h>

#include <sys/stat.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <fcntl.h>

#include <linux/kd.h>

#define SRAM_SIZE 0x00040000 // 256 Kbytes

static char sram_buf1[SRAM_SIZE], sram_buf2[SRAM_SIZE];

int main(int argc, char * argv[])

{

 int fd, len;

 unsigned long ms=0;

 char pattern=‘9’;

 if (argc > 2) {

 printf(“Usage: %s [pattern]\n”);

 exit(0);

 }

 if (argc == 2) {

 pattern=argv[1][0];

 printf(“pattern:%c\n”, pattern);

 }

 fd = open(“/dev/sram”, O_RDWR);

 if(fd < 0) {

 printf(“Open /dev/sram fail”);

 exit(0);

 }

 // Write the sram with pattern

 memset(sram_buf1, pattern, sizeof(sram_buf1));

 // Read from sram and compare with pattern

 len=read(fd, sram_buf2, sizeof(sram_buf2));

 if(len < 0) {

 printf(“Read from /dev/sram fail\n”);

 exit(0);

 }

 if (memcmp(sram_buf1, sram_buf2, SRAM_SIZE) != 0) {

 printf(“Memory compared fail\n”);

 exit(0);

 }

 printf(“The content is identical\n”);

 close(fd);

}

Make File Example
The following Makefile file sample code is copied from the Hello example on the UC-8410/8416/8418/8430’s
CD-ROM.

CC = xscale-linux-gcc

UC-8410/8416/8418/8430 Programmer's Guide

 5-17

CPP = xscale-linux-gcc
SOURCES = hello.c
OBJS = $(SOURCES:.c=.o)
all: hello
hello: $(OBJS)
 $(CC) -o $@ $^ $(LDFLAGS) $(LIBS)
clean:

 rm -f $(OBJS) hello core *.gdb

Moxa CAN Programming Guide

Introduction
CAN is a broadcast serial bus standard for connecting electronic control units (ECUs).

Each node is able to send and receive messages, but not simultaneously: a message (consisting primarily of an
ID—usually chosen to identify the message-type/sender—and up to eight message bytes) is transmitted
serially onto the bus, one bit after another. This signal-pattern codes the message (in NRZ) and is sensed by
all nodes.

Moxa embedded computers provide the CAN bus interface for industrial CAN communication. Users can use the
file control interface to read, write or control the CAN interface as a file for easy CAN programming.

Programming Guide
The CAN data format looks like this:

Define the structure for CAN programming as follows:

moxacan_ioctl.h

#ifndef _MOXACAN_IOCTL_H

#define _MOXACAN_IOCTL_H

#ifndef BIT

#define BIT(x) (1<<(x))

#endif // BIT

#define MAX_CAN_DATA_LENGTH 8

typedef union __attribute__ ((packed)) can_data_union {

 unsigned char array[MAX_CAN_DATA_LENGTH];

 struct byte_struct {

 unsigned char byte1;

 unsigned char byte2;

UC-8410/8416/8418/8430 Programmer's Guide

 5-18

 unsigned char byte3;

 unsigned char byte4;

 unsigned char byte5;

 unsigned char byte6;

 unsigned char byte7;

 unsigned char byte8;

 } byte;

} can_data_u;

typedef struct user_frame_struct {

 int id;

 int info; // RTR & extend ID flag

#define USER_RTR BIT(0)

#define USER_EXTEND_ID BIT(1)

 int data_length;

 can_data_u data;

} user_frame_t;

// ioctl command code

#define MOXACAN_IOCTL_SET_BAUD_RATE 0x100

#define MOXACAN_IOCTL_GET_BAUD_RATE 0x101

#endif // _MOXACAN_IOCTL_H

Then we can include this header for CAN programming

We can open /dev/can[n] to use the CAN device. Then read(), write() or ioctl() the device files. If you complete
the using, you should close() this file to release this device.

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <string.h>

#include “moxacan_ioctl.h”

#define PORT1_NAME “/dev/can0

#define PORT2_NAME “/dev/can1

int main(int argc, char *argv[])

{ int fd1, fd2, i, baudrate;

 user_frame_t txframe, rxframe;

 fd1 = open(PORT1_NAME, O_RDWR);

 if (fd1 < 0) {

 printf(“Open %s fail !\n”, PORT1_NAME);

 return -1;

 }

 fd2 = open(PORT2_NAME, O_RDWR);

 if (fd2 < 0) {

 printf(“Open %s fail !\n”, PORT2_NAME);

 return -1;

 }

 baudrate = 100000;

 ioctl(fd1, MOXACAN_IOCTL_SET_BAUD_RATE, &baudrate);

 ioctl(fd2, MOXACAN_IOCTL_SET_BAUD_RATE, &baudrate);

 memset(&txframe, 0, sizeof(txframe));

 memset(&txframe, 0, sizeof(rxframe));

txframe.id = 12;

 txframe.data_length = MAX_CAN_DATA_LENGTH;

 txframe.info |= USER_EXTEND_ID;

 for (i=0; i<MAX_CAN_DATA_LENGTH; i++)

 txframe.data.array[i] = 0x30+i;

UC-8410/8416/8418/8430 Programmer's Guide

 5-19

 i = write(fd1, &txframe, sizeof(txframe));

 printf(“Write port1 data return = %d\n”, i);

 printf(“Write data contexts are following :\n”);

 for (i=0; i<MAX_CAN_DATA_LENGTH; i++)

 printf("%c", txframe.data.array[i]);

 printf("\n");

 usleep(1);

 i = read(fd2, &rxframe, sizeof(rxframe));

 printf(“Read port2 data return = %d\n”, i);

 printf(“Receive frame id = %d, length = %d\n”, rxframe.id, rxframe.data_length);

 printf(“Receive data contexts are following :\n”);

 for (i=0; i<MAX_CAN_DATA_LENGTH; i++)

 printf("%c", rxframe.data.array[i]);

 printf("\n");

 close(fd1);

 close(fd2);

 return 0;

}

Makefile

CROSS_COMPILE=xscale-linux-

CC=$(CROSS_COMPILE)gcc

LD=$(CROSS_COMPILE)ld

STRIP=$(CROSS_COMPILE)strip

#STRIP=$(CROSS_COMPILE)strip -s

TARGET=tcan

TARGET1=canttrw

all: debug release

debug: $(TARGET).c $(TARGET1).c moxacan_ioctl.h

 $(CC) -ggdb -o $(TARGET)-debug $(TARGET).c

 $(CC) -ggdb -o $(TARGET1)-debug $(TARGET1).c

release: $(TARGET).c $(TARGET1).c moxacan_ioctl.h

 $(CC) -o $(TARGET)-release $(TARGET).c

 $(CC) -o $(TARGET1)-release $(TARGET1).c

 $(STRIP) $(TARGET)-release $(TARGET1)-release

clean:

 rm -f *.o $(TARGET)-debug $(TARGET)-release $(TARGET1)-debug $(TARGET1)-release

Note: Only UC-8418-LX support CAN port communication.

Software Lock
“Software Lock” is an innovative technology developed by the Moxa engineering team, and can be used by a
system integrator or developer to protect applications from being copied. An application is compiled into a
binary format bound to the embedded computer, and the operating system that the application runs on. As
long as it is obtained from the computer, it can be installed on the same hardware and under the same
operating system, resulting in a loss of the add-on value created by the developer.

Users can deploy this data encryption method to develop the software for the applications. The binary file
associated with each of your applications needs to undergo an additional encryption process after you have
developed it. The process requires you to install an encryption key in the target computer.

1. Choose an encryption key (e.g.,”ABigKey”) and install it in the target computer by a pre-utility program
called ‘setkey’.

#setkey ABigKey

UC-8410/8416/8418/8430 Programmer's Guide

 5-20

NOTE: Use the following command to clear the encryption key on the target computer.

#setkey ““

2. Develop and compile your program on the development PC.

3. On the development PC, run the utility program ‘binencryptor’ to encrypt your program with an encryption
key.

#binencryptor yourProgram ABigKey

4. Upload the encrypted program file to the target computer by FTP or NFS and test the program.

The encryption key is a computer-wise key. This means that the computer has only one key installed.
Running the program ‘setkey’ multiple times overrides the existing key.

To prove the effectiveness of this software protection mechanism, prepare a target computer on which an
encryption key has not been installed, or install a key different from that used to encrypt your program. In
either case, the encrypted program fails immediately.

This mechanism also allows computers with an encryption key installed to bypass programs that are not
encrypted. This is handy in the development phase since you can develop your programs and test them
cleanly on the target computer.

Qt-embedded
The UC-8430 offers the QT library which helps programmers design the UI framework. See the following for
details.

QT programming development flow chart.

Write the QT program to run the in thetarget environment. A basic QT program is shown below.

#include <QtGui>

#include <QApplication>

#include <QLabel>

1. QT Programming

3. Cross-compiling
#include <QtGui>
#include <QApplication>

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 // …

4. Upload to target and

test
2. QT Program Testing X86

UC-8410/8416/8418/8430 Programmer's Guide

 5-21

int main(int argc, char *argv[])

{

 QApplication app(argc, argv);

 QLabel *label = new QLabel("<H1>hello QT</H1>");

 QWidget window;

 label->setWindowTitle("Hello");

 label->setAlignment(Qt::AlignCenter);

 label->resize(200,100);

 label->show();

 window.resize(320, 240);

 window.show();

 window.setWindowTitle(

 QApplication::translate("toplevel", "Top-level widget"));

 return app.exec();

}

Compile and Test the QT Program on an X86 Machine
• Install the QT developing package

apt-get install build-essential libqt4-dev libqt4-dev-tools qt4-designer

• Compile the programs
1. Create the project file hello.pro
 qmake -project

2. Create the Makefile
 qmake

3. Compile
 Make

4. Execute
 ./hello

Set up Qt development
The qt-libraries have been included in arm-linux_2.3_YYMMDDHH.sh/arm-linux_3.x_YYMMDDHH.sh. You can
launch the auto-installed script to install the libraries. The setup the QTDIR and PATH for cross-compiling:

For toolchain v2.x:

Debian:~# export QTDIR=/usr/local/arm-linux/lib/be/qt-lib

Debian:~# export PATH=$QTDIR/bin:$PATH

For toolchain v3.x:

Debian:~# export QTDIR=/usr/local/arm-linux-4.4.2/lib/be/qt-lib

Debian:~# export PATH=$QTDIR/bin:$PATH

Cross-compile the Qt application and run with Dual-display
To enter the project folder:
Debian:~# cd hello

To create the project file, hello.pro:
Debian:~# qmake -project

To create the Makefile:
Debian:~# qmake

UC-8410/8416/8418/8430 Programmer's Guide

 5-22

To cross compile:
Debian:~# make

Upload the binary to target and run it with following command
Run the Qt application with assigned input and VGA output:

root@Moxa:/tmp# export QWS_MOUSE_PROTO=IntelliMouse:/dev/input/mouse0 ;

root@Moxa:/tmp# ./hello -qws -geometry 1024x768 -display voyagerlib:/dev/fb0 &

You can also run the second Qt application on another VGA output:

root@Moxa:/tmp# export QWS_MOUSE_PROTO=IntelliMouse:/dev/input/mouse1 ;

root@Moxa:/tmp# ./hello2 -qws -geometry 1024x768 -display voyagerlib:/dev/fb1 &

NOTE Refer to the Qt-embedded Web site, http://qt.nokia.com/doc/4.6/index.html, for more details on Qt
programming ,

A
A. Firmware Upgrade Procedure

Moxa provides a boot loader utility for firmware upgrade or recovery. You will need the following items to use
this utility.

1. The embedded computer that you would like to upgrade or recover.
2. A PC or a laptop computer.
3. A console port cable for connecting through HyperTerminal.
4. A cross-over Ethernet cable for upgrading the firmware through a TFTP server and LAN port.
5. The firmware for the embedded computer.

There are three steps in the recovery process.

A. Configure HyperTerminal for the console port.

B. Download and installation of the TFTP program.

C. Download the firmware and upgrade through HyperTerminal.

If you are familiar with Moxa embedded computers and the firmware upgrade procedure, you may skip to Step
C. However, we suggest that you go through all three steps to ensure the firmware upgrades properly.

A. Configure HyperTerminal for the Console Port.

1. Unscrew the cover on the back of the UC-8410 series embedded computer.
2. Connect the console port with a console port cable to your PC.

UC-8410/8416/8418/8430 Firmware Upgrade Procedure

 A-2

3. Connect your embedded computer to the power source. The power input is located on the rear panel.

4. Launch a serial communication tool to access your embedded computer. We suggest that you use
HyperTerminal, which is built into Windows XP. Click Start  Programs  Accessories 
Communications and then select HyperTerminal.

5. After HyperTerminal launches, enter UC-8410 or another name for the connection.

6. Click Cancel when the “Connect To” window opens.

UC-8410/8416/8418/8430 Firmware Upgrade Procedure

 A-3

7. Select File  Properties from the main HyperTerminal screen.

8. You can change the COM port number in the Properties window. Click Configure for additional
configuration options.

9. Configure the Port Settings with following parameters:

• Bits per second: 115200
• Data bits: 8
• Parity: None
• Stop bit: 1
• Flow control: None.

Click OK to continue.

UC-8410/8416/8418/8430 Firmware Upgrade Procedure

 A-4

10. Click the Settings tab and then select VT100 (for Emulation). Click OK to complete the configuration.

B. Download and Installation of the TFTP Program

1. You will need to download a free TFTP server package to upgrade the firmware for the boot loader utility.
Link to the following URL to download:
ftp://papa.indstate.edu/

Download the TFTP program located in the following path:
/winsock-1/Windows95/Daemons/TFTPD/

Download the file named tftpd32d.zip.

2. When you have finished downloading, extract the files to your PC.

ftp://papa.indstate.edu/�

UC-8410/8416/8418/8430 Firmware Upgrade Procedure

 A-5

C. Download and Upgrade the Firmware through HyperTerminal.

1. Connect to Moxa’s website at http://www.moxa.com, and then select Software from the Support
drop-down menu.

2. Under Search for Software, select the product line and then choose the specific product model. Click on
Search to continue.

http://www.moxa.com/�

UC-8410/8416/8418/8430 Firmware Upgrade Procedure

 A-6

3. In the software list, select the firmware for your model. Choose the appropriate OS and then click the
download icon to start downloading the new firmware. Note: Check the filename, it may differ from
the filename shown below.

4. Put the latest firmware icon in the same directory as the TFTP files.

5. Next, connect LAN1 of the embedded computer to your PC using a cross-over Ethernet cable. The LAN1
port is located on the rear panel of the embedded computer.

UC-8410/8416/8418/8430 Firmware Upgrade Procedure

 A-7

6. Press and hold down the DEL key on your PC and power on the embedded computer at the same time. You
will be guided to the boot loader utility menu, as show below.

1. In the boot loader utility, select [0] Network Configuration, and then [0] Change IP Setting to
configure IP addresses.

UC-8410/8416/8418/8430 Firmware Upgrade Procedure

 A-8

2. You will need to enter the IP address of the embedded computer and your PC. Follow the below to configure
the IP addresses.
a. From Start  Settings, select Network Connections.

b. Right-click on Local Area Connection, and then select Properties.

UC-8410/8416/8418/8430 Firmware Upgrade Procedure

 A-9

c. Click the General tab and select Internet Protocol (TCP/IP), and then click on Properties.

d. Next, select Use the following IP address and enter the IP address and Subnet mask.
For example:

IP address: 192.168.1.1 (This IP address is only an example; you may assign any IP address of your
choice as long as it’s on the same LAN as your PC.)

Subnet mask: 255.255.255.0

UC-8410/8416/8418/8430 Firmware Upgrade Procedure

 A-10

3. Go back to the boot load utility menu and assign the local IP address, and then enter the server IP address.
The local IP address is the IP address of the embedded computer. Note that the local IP address must
be on the same LAN as the server IP address. For example, if the server IP address is 192.168.1.1, you
can choose a local IP address between 192.168.1.2 to 192.168.1.254.

4. Select [z] Quit to command line to exit the IP setting option. Next, select [2] Firmware Upgrade, and
then [0] Load from LAN to continue.

UC-8410/8416/8418/8430 Firmware Upgrade Procedure

 A-11

5. To start the TFPF server, double-click on the tftpd32 icon to launch the TFTP server.

6. When the TFTP server has been launched, the following screen will appear.

UC-8410/8416/8418/8430 Firmware Upgrade Procedure

 A-12

7. Go back to the boot loader utility menu and enter the file name of the firmware image.

8. The firmware upgrade will then start to run.

9. It will take several minutes for the firmware files to be written to your embedded computer. Do not power
off your computer!

UC-8410/8416/8418/8430 Firmware Upgrade Procedure

 A-13

10. When you see Update OK, the firmware upgrade is finished. At this point, you may reboot the embedded
computer to complete the firmware upgrade or recovery from the boot loader utility.

11. If you cannot reboot your embedded computer (after following all the steps above), contact Moxa’s
technical support staff for further assistance.

B
B. System Commands

Linux Normal Command Utility Collection

File Manager
cp copy file

ls list file

ln make symbolic link file

mount mount and check file system

rm delete file

chmod change file owner & group & user

chown change file owner

chgrp change file group

chroot runs a command with a specified root directory.

sync sync file system; save system file buffer to hardware

mv move file

pwd display active file directly

df list active file system space

mkdir make new directory

rmdir delete directory

find search for files in a directory hierarchy

head output the first part of files

mkfifo creates a FIFO, special character file, or special block file with the specified name

mknod creates a FIFO, special character file, or special block file with the specified name

touch change file timestamps

which Locate a program file in the user’s path.

Editor
vi text editor

cat dump file context

grep Search string on file

egrep search string on file of Extended regular expressions

fgrep Search file(s) for lines that match a fixed string

cut Get string on file

find Find file where are there

more dump file by one page

test test if file exists or not

sleep Sleep (seconds)

usleep suspend execution for microsecond intervals

echo echo string

sed Steam editor

UC-8410/8416/8418/8430 System Commands

 B-2

awk pattern-directed scanning and processing language

expand Converts all tabs to spaces

tail Print the last 10 lines of each FILE to standard output.

tar The GNU version of the tar archiving utility

tr Translate, squeeze, and/or delete characters

wc Print byte, word, and line counts, count the number of bytes, whitespace-separated
words, and newlines in each given FILE, or standard input if non are given or for a FILE
of ‘-’.

Network
arp manipulate the system ARP cache

ping ping to test network

route routing table manager

netstat display network status

ifconfig set network IP address

tftp IPV4 Trivial File Transfer Protocol client

telnet Connects the local host with a remote host, using the Telnet interface.

ftp file transfer protocol

ifdown, ifup bring a network interface up, or take a network interface down

ip show / manipulate routing, devices, policy routing and tunnels

tcpsvd TCP/IP service daemon

wget The non-interactive network downloader.

Process
kill kill process

ps display now running process

fuser identify processes using files or sockets

killall sends a signal to all processes running any of the specified commands

nice, renice run a program with modified scheduling priority / alter priority of running processes

pidof find the process ID of a running program

run-parts run scripts or programs in a directory

start-stop-deamon start and stop system daemon programs

top display Linux tasks

Modules
insmod insert a module into the kernel

lsmod shows which kernel modules are currently loaded

modprobe intelligently adds or removes a module from the Linux kernel

rmmod remove module from kernel

Other
dmesg dump kernel log message

zcat Dump .gz file context

free display system memory usage

date print or set the system date and time

env run a program in a modified environment

clear clear the terminal screen

reboot reboot or power off/on the server

UC-8410/8416/8418/8430 System Commands

 B-3

halt halt the server

du estimate file space usage

gzip, gunzip compress or expand files

hostname show system’s host namebasename return filename or directory portion of pathname

dirname Convert a full pathname to just a path

expr evaluate arguments as an expression

false Do nothing, returning a non-zero (false) exit status

true Do nothing, successfully

fdisk Partition table manipulator for Linux

hwclock A tool for accessing the Hardware Clock

id Print the user identity

klogd Kernel log daemon

logger a shell command interface to the syslog system log module

md5sum compute and check MD5 message digest

mesg control write access to your terminal

mktemp make temporary file name

nohup No Hang Up

reset terminal initialization

stty change and print terminal line settings

syslogd Linux system logging utilities

uname Print system information, print information about the machine and operating system it
is running on

uptime Determine how long the system has been running

xargs build and execute command lines from standard input

yes ‘yes’ prints the command line arguments, separated by spaces and followed by a
newline, forever until it is killed.

tee Copy standard input to each FILE, and also to standard output.

Special Moxa Utilities
setkey set the software encryption key

upgradehfm upgrade firmware utility

libmoxalib.a Moxa perporitary libraries

upramdisk mount ramdisk

downramdisk unmount ramdisk

kversion show kernel version

setinterface set /dev/ttyMn to RS232/RS485-2WIRES/RS422/ RS485-4WIRES

	1. Introduction
	Overview
	Software Architecture
	Journaling Flash File System (JFFS2)
	Software Features

	2. Getting Started
	Powering on the UC-8410/8416/8418/8430
	Connecting the UC-8410/8416/8418/8430/8430 to a PC
	Serial Console
	Telnet Console
	SSH Console

	Configuring the Ethernet Interface
	Modifying Network Settings with the Serial Console
	Modifying Network Settings over the Network

	Test Program─Developing Hello.c
	Installing the Tool Chain (Linux)
	Checking the Flash Memory Space
	Compiling Hello.c
	Uploading and Running the “Hello” Program

	3. Managing Embedded Linux
	System Version Information
	Firmware Upgrade
	Upgrading the Firmware
	Loading Factory Defaults

	Enabling and Disabling Daemons
	Setting the Run-Level
	Setting the System Time
	TZ variable
	/etc/timezone

	Adjusting the System Time
	Setting the Time Manually
	NTP Client
	Updating the Time Automatically

	Cron—Daemon to Execute Scheduled Commands
	Connecting Peripherals
	USB Mass Storage
	CF Mass Storage

	4. Managing Communication
	Telnet/FTP
	DNS
	Web Service—Apache
	IPTABLES
	NAT
	NAT Example
	Enabling NAT at Bootup

	Dial-up Service—PPP
	PPPoE
	NFS (Network File System) Client
	Setting up the UC-8410/8416/8418/8430/8430 as an NFS Client

	Mail
	SNMP
	OpenVPN
	Package Management—ipkg
	Audio Playing and Recording
	Volume Control
	Playing a WAVE File
	Recording a WAVE file

	5. Programmer's Guide
	Flash Memory Map
	Linux Tool Chain Introduction
	Debugging with GDB
	Device API
	RTC (Real Time Clock)
	Buzzer
	WDT (Watch Dog Timer)
	Digital I/O
	UART
	SRAM
	Make File Example
	Moxa CAN Programming Guide
	Introduction
	Programming Guide

	Software Lock
	Qt-embedded
	Compile and Test the QT Program on an X86 Machine
	Set up Qt development
	Cross-compile the Qt application and run with Dual-display
	Upload the binary to target and run it with following command

	A. Firmware Upgrade Procedure
	B. System Commands
	Linux Normal Command Utility Collection
	File Manager
	Editor
	Network
	Process
	Modules
	Other
	Special Moxa Utilities

